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Introduction
It is widely recognized that long-term changes in global temperature or other climatic variables exhibit abrupt 
shifts and nonlinearities in their behavior (Beaulieu et al., 2012). These abrupt shifts include regime shifts such 
as the pacific decadal oscillations that have serious implications particularly on the ocean ecosystem. On the 
other hand, strong ultraviolet absorption and greenhouse effect of Ozone (  plays a major role in modulating 
atmospheric radiation balance (Forster and Shine, 1997). Diminishing global total Ozone column (TOC) has 
been attributable to anthropogenic influence (Zhang et al., 2014). Statistical investigations on change point 
detection in monthly TOC series analysis paves ways for scientists to determine whether climate change has 
taken place or not. Change point analysis (CPA) is the process of detecting distributional changes within 
time-ordered observations (James and Matteson, 2013). 
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ABSTRACT: Change point analysis (CPA) for the detection of both natural or artificial discontinuities and 
regime shifts in Total Ozone Column (TOC) aids in inferring its influence on regional climate change. Assessment 
of temporal variability in climate is complex and requires the utilization climate models that are known to 
exhibit autocorrelation which enhances their capabilities in detecting either gradual or abrupt changes in 
TOC.  Normally, changes in TOC may be associated to instrumentation changes or anthropogenic influence. 
This study presents for the first time, the utilization of Maximal Overlap Discrete Wavelet Transform (MODWT) 
in performing long term change point detections in TOC over East African from 1978 to 2013. This is because 
MODWT is not affected by circular shifting of the input series and also, its multiresolution capabilities allows 
for long term change point detections in TOC. Additionally, MODWT automatically separates the trend from the 
time series data therefore estimating the autocorrelated trend data. Results show that utilization of MODWT 
reveals no interannual change points detected in the TOC measurements over the region, therefore implying 
that TOC properties remained relatively constant interannually during the study period.  On the seasonal scale, 
TOC variability was evident and may be connected to biomass burning as well as the temporal evolution in 
precursor emissions such as carbon dioxide ( ), Methane ( ) and Nitrogen oxides ( ). Photochemical 
oxidation during the December-January-February (DJF) season characterized by elevated temperatures 
explains the enhanced variability in TOC. However, dry spells with minimal temperature experienced (during 
June-July-August (JJA)) may explain the single or no observed change points during the study period. During 
wet season i.e. March-April-May (MAM) and September-October-November (SON) the TOC variability 
may be associated with biomass and refuse burning, lightening and extreme rainfall and intrusion of 
stratospheric air over the region. 
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The concept of change point analysis derives its applications from bioinformatics (Muggeo and Adelfio, 2011), 
detect credit fraud (Bolton and Hand, 2002), climate science (Sneyers, 1997) among other applications. CPA can 
be applied in various fields among them Multivariate data sets such as TOC measurements from remotely sensed 
spectroscopic techniques for classification in data mining (Mampaey and Vreeken, 2011). The multivariate 
nature of satellite retrieved TOC requires a CPA technique that effectively and quantitatively identify and map 
the change points in a given atmospheric property i.e. TOC. There exist a number techniques which can be 
applied in various scenarios to determine change detection in any given time series data. 

These are: variance detection using Maximal Overlap Discrete Wavelet Transform (MODWT) and those in 
R-Statistics software through R packages that are known to perform Bayesian single CPA of univariate and 
multivariate time series; these are change point, ecp, cpm and bcp packages (Erdman and Emerson, 2007). 
Distributional changes can be identified by making use of the energy statistic of Székely and Rizzo (2005, 2010). 
The ecp package can freely be obtained at http://cran.r-project.org/web/packages/ecp/.

Change detections within linear regression models have been implemented in the strucchange package (Zeileis 
et al., 2002). Most of the tools embedded in the strucchange package focus on detecting at most one change 
within the regression model but at the same time performing online change detection which allows for multiple 
change point detection. Moreover, if the number of changes is known a priori then the breakpoints method can 
be used to perform retrospective analysis (Zeileis et al., 2002). For a given number of changes, this method 
returns the change point estimates which minimize the residual sum of squares (James and Matteson, 2013).

Studies pertaining the variability in TOC over the region have been documented (Edward et al., 2003; Diab et al., 
2004; Bortz and Prather, 2006; Denman et al., 2007; Ongoma et al., 2013; Shilenje and Ongoma, 2014; Thompson 
et al., 2014; Mutai et al., 2015; Songa et al., 2015). From these studies, it was established that variability in 
both tropospheric ozone and TOC is dependent on available solar radiation, temperature fluctuations, winds, 
seasons, anthropogenic influence and altitude among other factors.

Ground and satellite based Ozone measurements have been underway over the East Africa. This has facilitated 
ground truthing of Ozone data derived from satellite overpass and ground based Dobson spectrophotometer 
and Ozonesonde data over the region. From studies by Lähnemann (2004), the Differential Optical Absorption 
Spectroscopy (DOAS), measurements were ground truthed with that from TOMS, Scanning Imaging Absorption 
Spectrometer for Atmospheric Chartography (SCIAMACHY) and the Global Ozone monitoring experiment 
(GOME), as well as the Ozonesondes of Nairobi and found a very good agreement in trend for all instruments. 
The root-mean-square values of the deviations from DOAS were less than 3.5% and the mean deviations were 
below (< 1.5%) (Lähnemann, 2004). Correlation between the different data sets from ground and satellite 
based measurements projected a deviation < 5%. 

In the current study, we propose an algorithm based on MODWT to perform long term change point detections 
in TOC over East Africa from 1978 to 2013. Multiresolution capabilities of MODWT and the fact that it is not 
affected by circular shifting of the input series (Percival and Walden, 2000) together with the time-ordered 
property of most spectroscopic measurements allowed for the development of an algorithm to detect long-
term change point detection in TOC. TOC enhance studies on Ozone enhancement associated with dynamic and 
chemical processes such as biomass burning and El Nino events (Valks et al., 2014).

Methodology

Maximal Overlap Discrete Wavelet Transform (MODWT)

The MODWT is linear filtering operation that transforms a series into coefficients related to variations over a 
set of scales (Safari, 2008). The MODWT consists of basis vectors associated with a location  and unit less scale 
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 for each decomposition level . It is of significance to note that MODWT retains 
down sampled values at each level of decomposition which otherwise is always discarded by the traditional 
Discrete Wavelet Transform (DWT). Unlike DWT, MODWT is not influenced by circular shifting of the input 
series whereas the values derived by the previous depend upon the starting point of the series (Percival and 
Walden, 2000). Likewise, MODWT wavelet coefficients modestly increase the effective degrees of freedom on 
each scale hence decreasing the variance of a certain wavelet-based statistics estimate (Safari, 2008).

Decomposing an infinite sequence  of Gaussian random variables using the MODWT to  levels theoretically 
involves the application of  pairs of filters (Safari, 2008). The filtering operation at the  th level consists of 
applying a wavelet (high pass) filter  to yield a set of wavelet coefficients following the Equation 1.

                                                                                                                                                                 (1)

and a scaling (low-pass) filter  to yield a set of scaling coefficients

                                                                                                                                                                  (2)

for all times  (Percival and Walden, 2000). Details of the theoretical basis 
for MODWT can be found in Cornish et al. (2006). For our specific application of MODWT, signals from satellite 
measurements that necessitate the retrieval of GHGs profiles are usually sampled at finite interval and discrete 
times i.e. satellite overpass time over the region. To complete the filtering operation at each level, then 

, MODWT treats the series as if it were periodic whereby the unobserved samples 
 are assigned the observed values  (Safari, 2008). Thus, the 

MODWT coefficients are given by

                                                                                                                                                    (3)

and 

                                                                                                                                                     (4)

for   as detailed in Cornish et al. (2006). Other than selecting appropriate boundary 
conditions, MODWT requires specification of the wavelet filter and the index  for the maximum scale of 
interest (Safari, 2008). In the present case, the ‘Haar’ filter was utilized while the number of levels was set for 
the maximum of six (6) corresponding to the data size. 

Change Detections in Tropospheric Ozone Column

Wavelet Toolbox in Mat lab provides functions necessary to analyze TOC measurements into progressively 
finer octave bands using decimated (down sampled) and non-decimated wavelet transforms, including the 
MODWT. MODWT multi resolution analysis enables the detection of patterns that are not visible in the raw 
data. For example, it is possible to measure the multi scale correlation between two signals or obtain multi scale 
variance estimates of signals to detect change points. In the current study, the later was utilized to determine 
the change points in TOC profiles over the entire East Africa. The following procedure was implemented in the 
quest of determining the change detections in the TOC time series data using the ‘Haar’ wavelet and the level of 
decomposition employed was maximum for the data size (6). 

Read the data from the excel files•	

De-trend the data (removing the linear bias to bring the variations about the horizontal axis •	
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Obtain the maximal overlap discrete wavelet transform •	

Check for the indices of changes in variance for each level of decomposition of the transform •	

Use these indices to determine the monthly changes in TOC profiles over each study site•	

Results and Discussions
Global fluctuations in TOC are associated to anthropogenic influence (IPCC 2007).  To quantify variabilities in 
TOC properties, we need robust techniques that can adequately handle TOC profiles multivariate characteristics 
in the environment. Among them is the MODWT that effectively quantifies the non-stationary characteristics 
of TOC properties as measured by a number of satellites over East Africa.  The MODWT was used to determine 
the change points in TOC profiles via the ‘Haar’ wavelet. The main advantages of utilizing the MODWT is that its 
multiresolution and it can also automatically separates the trend from the time series data and further model 
and estimate the autocorrelated trend data as discussed in the following subsections.  

Change Detections in Total Ozone Column

Ozone ( ) was primarily measured on TOMS-Nimbus-7 (November 1978-May 1993), TOMS Meteor-3 (August 
1991-December 1994), TOMS EP (July 1996-2005) and OMI (July 2004-To date) in that sequence. Where 
any of the two platforms perform measurements at the same time over a given site, the two measurements 
were averaged accordingly since the retrieval algorithm used was the same i.e. TOMS version 8 algorithm. 
Accumulatively all the measurements started in 1978 to 2015. A summary of TOC change points detected by 
MODWT over East Africa in each season are shown in Table 1 while the graphical representation of the same is 
in Figures 1-5.

Table 1. Estimated annual and seasonal change points in ozone over selected sites of East Africa from 1978 to 
2015 using the MODWT

Estimated change points in TOC 
Interannual Seasonal

DJF MAM JJA SON
NON Feb 1983, Dec 

2002, Jan 2008
Apr 1984, Apr 1985, 
May 1993

Jun 1984 Sep 1993, Nov 
2000

The various proxies associated with natural and anthropogenic processes that describe the chemical and 
dynamical changes in TOC over a given region as detailed by Chehade et al. (2014). These include Brewer 
Dobson Circulation (BDC), Quasi-biennial Oscillation (QBO), El Niño Southern Oscillation (ENSO), solar cycle 
and atmospheric aerosols. Utilizing the MODWT, it is notable that there are no interannual change points 
detected in TOC measurements over East Africa (Figure 1). Therefore, TOC measurements remain relatively 
constant interannually.  As well, changes in TOC may also vary seasonally due to biomass burning and temporal 
evolution in precursor emissions i.e. ,  and  present in the atmosphere (UNEP 2006, 
Chehade et al., 2014). 

During the December-January-February (DJF) season, MODWT successfully identified change points as detailed 
in Table 1 (also see Figure 2). Basically, during this season the entire East African region experiences dry spells 
with elevated temperature that may explain the observed changes in TOC profiles attributable to photochemical 
oxidation and limited removal process over the region (Shilenje and Ongoma, 2014). Additionally, increasing 
minimal temperature experienced particularly over urban sites in the region invoke the heat island effects 
that necessitate the transport of these pollutants from the surrounding regions therefore elevating TOC 
concentrations (Ongoma et al., 2013). On the contrary, dry spell with minimal temperature experienced over 
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the sites of study (during June-July-August (JJA)) may explain the single change point observed over the region 
(see Table 1 and Figure 4). Low temperature experienced over the study sites in essence inhibits photochemical 
oxidation process which affects their variability hence no or limited change points noted during the study. 

Estimated seasonal change points dominate the wet season during long rains i.e. March-April-May (MAM) over 
East Africa (see Table 1 and Figure 3). The significant number of change points (variability in TOC concentrations) 
revealed by the MODWT signifies the role of rainfall producing mechanism through thunderstorms and extreme 
rainfall and intrusion of stratospheric air (Mutai et al., 2015). Additionally, it has been established that biomass 
burning and lightening were the two main tropical sources of tropospheric  and hence TOC variability over 
South Africa (Edward et al., 2003). It is also notable that during the September-October-November (SON) 
season, there is an enhanced variability in TOC concentrations i.e. higher number of change points as compared 
to JJA season (see Table 1 and Figure 5). This variability may be attributed to biomass and refuse burning, 
lightening and extreme rainfall and intrusion of stratospheric air over the region (Mutai et al., 2015).
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Figure 1. Estimated annual change points in Total Ozone Column measurements using MODWT
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Figure 2. Estimated Seasonal change points in in Total Ozone Column using MODWT (DJF)
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Figure 3. Estimated Seasonal change points in Total Ozone Column using MODWT (MAM)
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Figure 4. Estimated Seasonal change points in Total Ozone Column using MODWT (JJA)
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Figure 5. Estimated Seasonal change points in Total Ozone Column using MODWT (SON)
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Conclusions
Assessment of anthropogenic influence of TOC on climate change requires a comprehensive quantification of 
temporal characteristics.  Quantification of TOC temporal variability with an aim of understanding its role on 
both regional and global climate change, we report on more than thirty years of TOC change point detection using 
MODWT. Interannual variability in TOC remained invariant during the study period while seasonal variability 
is evident and associated to anthropogenic influence, extreme rainfall, variability in precursor emissions of 
Ozone, stratospheric air intrusion and photochemical oxidation. 
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