American Research Journal of Public Health ISSN: 2639-3042 Volume 1, Issue 1, pp: 1-13

Research Article

Open Access

Cervical Cancer Screening's Predictors in European Countries: A Systematic Review Quach Ha Linh, BPH

School of Public Health, University of Hong Kong sylquachsc@gmail.com

Abstract

Objects: The study aim to explore the socio-demographics factors influencing women's decision of cervical screening uptake in European countries.

Methods: Systematic review was used with Health Belief Models analysis.

Results: The study identified 15 studies about cervical screening uptake's predictors. Perceived risks and barriers are predictors of screening practices, and heavily influenced by socio-demographic characteristics of women with organizational factors from public health systems.

Conclusion: Screening behaviors of women in European countries are influenced by various factors, and can be predicted by HBM. This review summarizes these driving factors to foster understanding of cervical cancer screening in population. To increase screening uptake, healthcare staffs should integrate these factors into cervical screening programs along with education and services improvement.

INTRODUCTION

Despite remarkable advances in treatments, cervical cancer has remained a great burden of health in European countries [1, 2]. As a sound prevention measure, cervical screening is highly recommended for women aged 25-65 [3].

Many factors such as socio-demographics [4, 5] can impact cervical screening's uptake. Many studies in USA showed that screening practices are impacted by socio-demographic factors [6]. To explore these factors roles in women's decision about cervical screening, this review aims to apply Health Belief Model (HBM) [7] - a recommended tool for prediction of screening uptake [8, 9] - to analyze cervical screening practices and its predictors in European countries.

Understanding how socio- demographics factors influencing attitudes and beliefs in cervical screening, health care providers and policy makers can develop better accessible screening programs.

Methods

Data Sources

A systematic review is conducted to assess cervical cancer screening's predictors in European countries. The study utilized electronic databases including PubMed, MEDLINE, health journals from 2000 to 2018 under terms: "cervical cancer screening", "European countries", "health belief model", "perceived risk", "predictors", "socio-demographics factors". A supplementary search in references of relevant articles provided additional input. The process was illustrated in Figure 1.

Study Selection

The study examined all qualitative and quantitative study designs including multiple research methodologies. The inclusion criteria included English language, European countries research of socio-demographic factors roles in cervical cancer screening practices; preferably HBM's application. The exclusion criteria were studies not involved cervical cancer screening and socio-demographic factors; not conducted in European countries; inaccessible data; not in English.

Figure 1. Studies search process.

RESULTS

Data Outcomes

The initial database search identified 2462 articles. After reviewed by inclusion criteria, 15 studies were identified. While sample size of these studies ranged from 46 to 1890, research population was determined by either randomization, convenience or purposive sampling. Subjects in these studies were women within 14-65 years old. Cross-sectional descriptive design was used most frequently, followed by 2 qualitative reviews [10, 11], 2 prospective studies [12, 13], 1 randomize control trial [14], 1 case-control study [15]. While most studies were involved socio-demographics factors, 1 study focused on smoking [16], 3 studies focused on minorities [17-19]. Applied methods were varied: interview, survey and focus groups. Language barriers were reported in 2 studies with minorities [18, 19]. 2 reviews featured HBM [15, 20], all studies covered perceived risk, barriers and attendance to screening.

Further details are illustrated in Table 1.

Table1. Summarize of studies review

Authors	Study design	Sample	Outcomes	Results	Discussion
Years	Population	size	measures		
countries					
Sonja Eaker	Case-control	944	HBM models	Attendance was positively associated	Differences between nonattenders
et. al. (2001)	study		Attitudes and	with perceived severity (OR = 1.9) and	and attenders are based on their
Sweden [15]	Population-		beliefs' affect	satisfactory benefits (OR = 0.7), but	attitude and beliefs. Main barriers
	based		on women's	negatively associated with barriers	are emotion, misunderstandings
	Screened and		participation	(time-consuming and economical -	and lack of relevant information.
	non-screened		in cervical	OR = 1.2 and OR = 1.7 respectively),	The study had access to national
	women aged		screening	anxiety [15] Nonattenders need their	database but low response rate in
	25-60 years			preferences to be met to change	nonattenders responses.
				behaviors.	
Theresa M	Cross-	722	Smokers' and	Smokers perceived higher risk of	Having a positive attitude towards
Mateau et.	sectional		non-smokers'	cervical cancer but less positive attitude	cervical screening and a higher
al. (2002)	descriptive		perceptions	towards cervical screening than non-	perception of the relative chances
United	study Women		of risks of	smokers. Intention to attend cervical	of developing cervical cancer each
Kingdom	aged 20 - 64		cervical cancer	screening in both groups were high.	predicted intention to attend for
[16]			and attitudes	Attitudes towards cervical screening	cervical screening. Smokers are
			towards	(OR = 1.9), perceived relative risk of	unaware of their increased risk
			cervical	developing cervical cancer (OR 1.5),	of cervical cancer and benefit
			screening.	educational level (OR = 3.8) and marital	of cervical cancer screening.
				status (OR = 0.6) were predictive of	Limitations are not directly
				attendance for screening. [16]	assessed screening behaviors.
Rachel M	Pragmatic,	1890	Stated	Interventional women was less likely	Perceived risk contributed greatly
Holloway et.	practice-		preferences	to attend a shorter than recommended	to determine screening intervals
al. (2003)	based cluster		for screening	interval (OR = 0.51 ; $p < 0.0001$) and	and practices. Individualized
United	randomized		interval	less likely to attend for screening	risk communication by primary
Kingdom	controlled		and actual	sooner than their recommended recall.	care can affect women's stated
[14]	trial. Women		screening	[14] Intervention have demonstrated	preferences for tests and perceived
	were		behavior.	better knowledge and perceived risk,	risk. Different samples in control
	recruited			screening practices and anxiety relief.	and intervention groups can affect
	while			The impact of perceived risk on actual	the comparison although large
	attending			screening behavior was equivocal.	sample size and longitudinal
	for cervical			[14] Control groups overestimate of	experimental study are strengths.
	screening			population risk of cervical cancer due	
				to public health campaign, media scares	
				and lack of knowledge. [14]	

DP French	Prospective	406	Perceived risk	Woman with negative results have	Attendance was not associated
et. al. (2004)	questionnaire		and perceived	higher risk perception (P = 0.016),	with any demographic variables
United	design		barriers among	higher anxiety state (P = 0.025), higher	but was predicted by state anxiety,
Kingdom	Women with		attenders and	concern (P<0.001). [13] Predictors of	expectation and satisfaction with
[13]	normal test		nonattenders	attendance of repeat test was anxiety	given information. Satisfaction
	results and		of cervical	(P = 0.001) (13) Perceived risks are	with information was best
	women with		screening	predictive with higher state anxiety (P	predictor of anxiety and concern
	inadequate			= 0.042), lower satisfaction with given	about the tests. The study's
	test results			information (P<0.001), high concern.	limitation is generalizability due to
				[13]	sample and observational design
					(not infer the causal associations).
Jane C. Walsh	Prospective	1114	Impact of	Poor levels of knowledge about cervical	Barriers play a crucial role on
(2006)	quantitative		knowledge,	cancer and screening. Unpleasant	attendance rates. Highlighting
Ireland [12]	design Irish		perceived risk.	past experience of smear test were	benefits of cervical screening,
	woman aged		past experience	associated with nonattenders	provision of more flexible
	25-60		and perceived	(P<0.001) [12] Screening attenders'	services to accommodate more
			barriers on	behavior predictors included increased	women, media campaigns on
			attendance	perception of risk (P < 0.05), level of	acknowledging discomfort of the
			for a routine	understanding about cervical screening	test can enhance attendance rates.
			cervical	(P = 0.001), and perceived barriers	
			screening	(time consuming (P < 0.01); distressful	
				(P < .01) and fear-provoking $(P < 0.05)$.	
				[12] Male smear taker, commitments	
				and unsuitable appointment times also	
				barriers. [12] Married/retired women	
				are more likely to attend screening ->	
				more social support and more time.	
Margot	Cross-	1392	Impact of	Beliefs about cervical screening and	Woman's belief is better predictor
Tacken et.	sectional		women's	attendance especially personal moral	of uptake of cervical screening
al. (2006)	descriptive		characteristics	obligation and normative beliefs of	than organizational aspects. A
Netherlands	research		(demographics,	others are good predictors of uptake.	balance relationship influences
[21]	design Dutch		risk behavior,	(p<0.05) Organizational factors such	on the screening attendance.
	women (30-		and beliefs)	as invitation and reminders in general	Demographics do not play
	60 years old)		and services	practice also contributed. [9] Screening	significant roles. Poor perceived
			characteristics	attendance of women with one sexual	risk and lack of information are
			on cervical	partner lifelong is significantly greater	reasons of non attenders
			cancer	than that of women with none or more	
			screening.	than one partner lifelong. [9]	

American Research Journal of Public Health

Laura AV	Cross-	965	Perceived risk	HPV information did not have an	Health information has more
Marlow et.	sectional		of cervical	effect on perceived risk of cervical	effect on perceived risk of younger
al. (2009)	quantitative		cancer and	cancer (p=.396), but have increased	women than older women.
United	design		cervical	perceived risk (p<.001) in the youngest	Perceived risks are main driver in
Kingdom	(interview)		screening	age group and decreased in the oldest	cervical screening behaviors for
[22]	British		practices	age group. [22] Perceived risk have	younger women.
	women age			positive correlation with attendance	
	16-75 years			in cervical screening in high-risk age	
				groups (p=0.022) Barriers: long-term	
				relationship (older women), fear	
				(younger women) [22]	
Kati Kuitto	Cross-	760	Determinant	Regular screening attendance was best	Cervical cancer screening
et. al. (2010)	sectional		of attendant to	predicted by attitude; also by socio-	behaviors are positive related
Germany	descriptive		cervical cancer	structural characteristic and subjective	to perceived benefit of regular
[23]	research		preventive	risk. Screening attendance was	screening. Low respondent rate for
	design		measures	significantly higher among respondents	younger age groups (14-26 years
	German			of higher socioeconomic status and	old) Low level of knowledge about
	women aged			higher educational attainment. Lack	cervical cancer and its risk factors
	14–65 years			of willingness to invest in a healthy	
				lifestyle was predictive of irregular	
				screening attendance. Knowledge of	
				cervical cancer/prevention was not	
				predictive of screening practices. [23]	
				Attendance at screening was associated	
				with positive connotation of cancer	
				prevention and expectations (role	
				models, confidence gains, fear and high	
				risk perception. (OR 1.77) [23]	
J Waller et.	Qualitative	58	Barriers to	Barriers (by health professionals):	Services provision and health
al. (2011)	review		attendance	poorly informed of services, mobility,	education play crucial role in
United	(focus group,		at cervical	poor service provision, time pressure,	cervical cancer screening practices.
Kingdom	interview)		screening.	low perceived risk and poor attitude,	Time demand and perceived risks
[11]	UK screening			psychological barriers and paternalistic	are main drivers of nonattendance
	professionals,			attitudes. [11] Barriers (by women	in cervical screening. Age
	nonattenders			themselves): disinclined abstainers	differences are barriers to
	(25-65 years			(sexually inactive, potential harm),	screening.
	old)			inclined abstainers (service provision	
				issue, negative emotion, time demand,	
				low-risk perceptions) [11] Older	
				women tend to make an active decision	
				not to take part and younger women	
				intended to be screened but did not	
				attend.	

Alice Kivistik	Cross-	1054	Awareness of	Perceived barriers are a recent visit to	Lack of information sharing about
et. al. (2011)	sectional		cervical cancer	a gynecologist (42.3%), fear-provoking	cervical cancer risk factors and
Estonia [18]	population		risk factors.	(14.3%), long appointment queues	screening. Individualized and
	based survey		reasons why	(12.9%) and unsuitable reception	delicate information sharing
	design		women do	hours (11.8%), language differences	can encourage women to uptake
	Women aged		not want to	in minority groups. Fear was higher	the screening. Minorities, older
	30 to 55		participate	among women aged 30 and 35 than	women or women with small or
			in cervical	50 and 55 (RR 1.46) and women with	no children are at higher risk. Low
			screening	one or no children (RR 1.56). [18]	response rates, potential biased
			program.	Awareness of cervical cancer risk	due to the interest of cervical
				factors is poor and not depend on socio-	cancer.
				demographic factors. Awareness is	
				lower in minorities groups.	
Christine	Cross-	937	Socio-	Perceived barriers of poor attendance	Ethnicity, migration and religiosity
Ekechi et.	sectional		demographic	for screening are procrastination	play a role in predicting cervical
al. (2014)	study using		and ethnicity-	(28%), fear of the procedure (18%)	screening attendance among Black
United	questionnaire		related	and low risk perception (18%). Most	women. Those who attend religious
Kingdom	Black women		predictors of	nonattenders are young (p<0.05), single	service on a frequent basis were
[17]	aged 18 - 78		cervical cancer	(p<0.05), and higher education level	more likely to delay cervical
			knowledge,	(p<0.005). [17] Ethnicity, birthplace	screening. The study took a novel
			cervical	and religiosity are listed as barriers	approaches to recruit and target
			screening	for screening attendance. Young age	a specific ethnic group resulting
			attendance	(p<0.005), single, African (p<0.05),	in larger sample size. Although
			and barriers in	migrated (P<0.005), religious services	lower response rate, limited
			black women	attendance (P<0.05) were associated	diversity in socio-cultural factors in
				with poor screening practices. [17]	recruitment and language barriers
					can be limitation.
Gokce B. Acar	Cross-	267	HBM models	Lack of any health complaints (28.3%)	Awareness, susceptibility and
et. al. (2015)	sectional		Socio-	and not having adequate information	motivation perception towards
Turkey [20]	descriptive		demographic	about the test (21.0%) were barriers	screening was low. Socio-
	research		and cultural	for not undergoing a Pap smear test.	demographic properties of women
	design		features,	Education level, employment status	are influential on their Pap smear
	Women 15		socioeconomic	and pregnancy status have positive	test taking attitude. Informed
	-49 years old		conditions,	correlation with screening behaviors	women are more willing to take the
			health	and knowledge of cervical cancer (p <	test.
			perspectives,	0.05). [20]	
			the knowledge		
			about cervical		
			cancer and Pap		
			smear test		

American Research Journal of Public Health

Fatima	Focus group	800	Perception	Barriers: competing needs,	Immigration factors may
Azerkan et.	discussions		of cervical	organizational and structural	influence cervical cancer
al. (2015)	Danish and		cancer	factors, immigration-related	screening behavior, including
Sweden	Norwegian		screening	perceptions, past experiences,	self perception and experiences;
[19]	immigrant		and driven	psychological and individual factors,	along with other social and
	women (27-		factors of	childbearing-related factors, social	individual factors. Many
	66 years		nonattenders	support, social network, risk	immigrants are unaware of
	old)		for cervical	perception. [19]	being non-attendance.
			cancer		
			screening		
Mihaela	Cross-	454	Perception	Good awareness of pap smears, lack	Socio-demographic
Grigore et.	sectional		and	of knowledge and acceptance of	characteristics of individuals
al. (2017)	study		awareness	screening showed in lower socio-	have significant effects on
Romania	Women		of pap smear	economic status and rural women.	knowledge and benefit of
[24]	from rural		tests	[24] Perceived barriers: financial	Pap smear and acceptance.
	and urban			difficulties, embarrassment,	The study have large sample
	areas			fear, lack of counselling, low-risk	from different socioeconomic
				perceived, lack of knowledge,	statuses.
				fatalistic attitude, low susceptibility	
				perceived. [24]	
Hersha	Qualitative	46	Awareness	Knowledge: Lack of information	Educational methodology
Patel et.	review		and attitudes	about cervical cancer screening	might not be deliverable to
al. (2018)	(interview)		towards HPV	program content and follow-up	women for motivation and
United	25-65-		screening	assessment necessary. Attitude:	information about cervical
Kingdom	year-old UK			not motivated to participate	screening. Lack of risk
[10]	women			after HPV information provided	and health communication
				Perceived risks: not motivated to	between nurses/doctors
				have follow-up test after negative	and patients. Perceived risk
				results, negative emotion after	and participation affected by
				positive results. [10] Perceived	cultural, religious and lifestyle
				barriers to participation: long-	background. Lack of/negative
				term relationship sabotage; social	partner support may worsen
				judgement of high-risk lifestyles	adverse psychological effects
				compared with nonattenders. [10]	experienced. Small sample
					size and lack of cultural and
					religious factors assessment are
					limitations.

Awareness and Knowledge

Overall women's awareness of cervical screening services were high (75%-95%) [5, 18, 20, 24]. Studies found significant association between awareness and socio-economical factors and minorities status indicating socioeconomic disparities of healthcare accessibility [18, 24]. Two studies in UK stated that women were only aware of the test after receiving positive results [10].

On the other hand, lack of knowledge about cervical screening and cervical cancer risk were notable in many studies (48%-70%) [12, 17, 18, 20, 24]. Better knowledge were observed in screening attenders [12], dominant ethnic groups [17, 18], child-bearing [18], higher education, older age [17, 20, 22]. Knowing someone with cervical cancer [20, 24] and visiting healthcare [24] were also predictors for knowledge. While some studies observed significant relationship between marriage status, income and knowledge [20, 24], the opposite was true to Kivistik [18] and Ekechi [17]. Two studies did not observe knowledge as a predictors of screening attendance [12, 23].

Perceived Susceptibility

Susceptibility as women's perception of the likelihood of experiencing cervical cancer was relatively low [20]. Lack of knowledge of cervical cancer and its risk factors [20, 24], having no symptoms [20, 24], low-risk perception [15, 17, 24], monogamous lifestyle, belief in partner's sexual health, religious belief [10] or not sexually active [11], young age [11, 19] were common low susceptibility beliefs observed. While no different of perceived risk was shown between smokers and nonsmokers [16], younger and older [11]; sexually active and inactive women [10] and women had experienced positive smear test versus negative [13, 20] had different view of their vulnerability of cervical cancer. Such disparities between age and lifestyle showed the socio-cultural influences on women's misconceptions of cervical cancer, resulting in low screening attendant rates. Presentation of HPV information are suggested to improve perceived risk in younger women [14, 22].

On the other hand, women with chronic diseases [20] and who regular attended screening services [12, 22] perceived themselves as higher susceptibility. Greater perceived risk of developing cervical cancer was predictor of attention/attendance to screening services [12-16, 22]

Perceived Severity

As women with higher education, higher income, chronic diseases [20], sexually active [10], regular attend cervical cancer [12] perceived higher severity of cervical cancer, non attenders tended to see cervical cancer as less severe compared to other cancer and not worth treated [15].

One study suggested that women were likely to perceive cervical cancer much more common and severed than reality because of media coverage [11]; while another stated women's risk perception seemed to be connected to the health problems of people in their social circles [19]. Perceived risk of developing cervical cancer was also higher in women with uninformative results [13]. Overall, perceived severities are influenced by socio-economic factors and lifestyle. Higher perceived severity was a moderate predictor of screening practices [10, 12].

Figure 2. Predictor of cervical screening practices using HBM.

Perceived Benefit

Women's belief in cervical screening's benefit score was recorded high in Turkey's study [20]. Perceived benefit was higher in high educated, employed women with better knowledge and practices of screening [20]. Kuitto also stated that as women perceived cervical screening as a sound cancer prevention and positive health promotion, such benefits can improve screening practices [23]. Additionally, studies in United Kingdom showed women acknowledged primary HPV screening as beneficial to their reproductive health and cancer prevention,

especially in sexually active groups, then consequently attend screening more often [10, 11, 16]. In contrary, perceived benefits were not acknowledged as a predictor for screening behaviors [15, 20].

However, as cervical screening demonstrated fewer immediate benefits [11], perceived benefits in younger women were low [20]. Lower perceived of benefits were also consistent in 2 studies in Sweden [15, 19], as both found nonattenders' negative feeling towards quality and accuracy of the screening as well as healthcare system. It is possible that perceived benefits of cervical cancer are influenced by women's attitude towards health system.

Perceived Barriers

Perceived barriers in cervical screening included: fear of procedure [12, 13, 15, 18, 20, 24], low risk perception [19, 20, 24], time [11, 15, 24] and financial pressure [15, 24], embarrassment [11, 24], services provision issues [11-13, 18], social norms from religious, relationship and sexual implication [10, 11], negative partners support [10, 19], other commitments [11, 12, 20], negative past experience [11, 15], stress [12]. More barriers were recorded in younger and single women [17]. Higher barriers perception was associated with lower cancer screening practices [12, 15].

While Swedish immigrants' barriers also included competing needs, organizational and structural factors and mentality differences, which related to immigration status [19], other studies on minorities groups did not detect these differences [17, 18].

According to one study, while higher educated, employed women with better knowledge and screening practices perceived less barriers, women who had family gynecological cancer history tended to feel more barriers towards cervical screening [20]. The result was not consistent with one study in UK showing higher educated employed women were more likely to provide barriers of nonattendance [17].

Cues to Action

Children, partners and health care providers are source of social support for women to attend screening [15]. If family and friends are supportive force [11, 12, 19, 23], health care providers [11, 19, 21] were perceived as opposing source that discourage women to seek cervical screening. Mass media also plays important role in this stage [11, 24]. Immigration groups reported to experience less cue to actions [19].

Self-Efficacy

Willingness to engage in health promotion behaviors [23], self-confidence gains [10, 23] and normative belief [21] are strongly associated with higher attendance of cervical screening.

DISCUSSION

This review provided an insight look into cervical screening's practices and its predictors among European women. Perceived susceptibility, severity and barriers are most predictive of screening practices; as well as women's awareness and knowledge of cervical cancer, its risk factors and prevention measures. This outcome is consistent with previous findings [25, 26]. The influence of demographic factors such as ages, religious and ethnicity were presented most in knowledge and awareness of women, perceived susceptibility, benefits and barriers. Socio-economics' impacts were varied among awareness, knowledge and perceived severity, barriers. Considerations into these factors are crucial in implementation and improvement of current cervical screening in European countries.

Regarding perceived barriers, benefits, and cue to actions; organizational and structural factors play a big part in determinant of women's screening practices. As healthcare providers and healthcare quality were associated with screening attendance, public health should consider relevant strategies to enhance service provision such as individualized invitation letters [10, 11, 18], GP recommendations [11, 13, 18, 24] and desexualized screening [10].

Along with social norms and lack of partner's support, lack of knowledge and awareness of cervical screening effects heavily on women's perceived perceptions. An outreach intervention, especially for younger women [10] is needed to improve public understanding of cervical cancer.

The review encountered some limitations. Most studies are cross-sectional studies with quantitative measures so the causal impact on screening behaviors is not fully exposed. Many studies was carried out in United Kingdom hence the lack of diversity for other countries. Applied HBM also met some challenges and limitation to interpret the results due to inconsistency in usage of the model, inclusion of different components across studies. Moreover, small sample size and low response rate were commonly reported, emphasized on potential bias. From the review, current available approaches were insufficient to explain the perception and behavior of cervical cancer, research with alternative designs and more diverse contexts are needed [26].

CONCLUSION

Screening behaviors of women in European countries are influenced by various factors, and can be predicted by HBM. This review summarizes these driving factors to foster understanding of cervical cancer screening in population. To increase screening uptake, healthcare staffs should integrate these factors into cervical screening programs along with education and services improvement.

REFERENCES

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;0(0).
- 2. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer. 2018;103:356-87.
- 3. Basu P, Ponti A, Anttila A, Ronco G, Senore C, Vale DB, et al. Status of implementation and organization of cancer screening in The European Union Member States—Summary results from the second European screening report. International Journal of Cancer. 2017;142(1):44-56.
- 4. Palència L, Espelt A, Rodríguez-Sanz M, Puigpinós R, Pons-Vigués M, Pasarín MI, et al. Socio-economic inequalities in breast and cervical cancer screening practices in Europe: influence of the type of screening program. International Journal of Epidemiology. 2010;39(3):757-65.
- Walsh B, Silles M, O'Neill C. The importance of socio-economic variables in cancer screening participation: A comparison between population-based and opportunistic screening in the EU-15. Health Policy. 2011;101(3):269-76.
- 6. Fylan F. Screening for cervical cancer: a review of women's attitudes, knowledge, and behaviour. British Journal of General Practice. 1998;48(433):1509.

- Rosenstock IM. The Health Belief Model and Preventive Health Behavior. Health Education Monographs. 1974;2(4):354-86.
- 8. Gillam SJ. Understanding the uptake of cervical cancer screening: the contribution of the health belief model. British Journal of General Practice. 1991;41(353):510.
- 9. Tanner-Smith EE, Brown TN. Evaluating the Health Belief Model: A critical review of studies predicting mammographic and pap screening. Social Theory & Health. 2010; 8 (1):95-125.
- 10. Patel H, Moss EL, Sherman SM. HPV primary cervical screening in England: Women's awareness and attitudes. Journal of Psycho-oncology. 2018.
- Waller J, Jackowska M, Marlow L, Wardle J. Exploring age differences in reasons for nonattendance for cervical screening: a qualitative study. BJOG: An International Journal of Obstetrics and Gynaecology. 2012; 119 (1):26-32.
- 12. Walsh JC. The impact of knowledge, perceived barriers and perceptions of risk on attendance for a routine cervical smear. The European Journal of Contraception Reproductive Health Care. 2006;11(4):291-6.
- 13. French DP, Maissi E, Marteau TM. The psychological costs of inadequate cervical smear test results: threemonth follow-up. 2006;15(6):498-508.
- 14. Holloway RM, Wilkinson C, Peters TJ, Russell I, Cohen D, Hale J, et al. Cluster-randomised trial of risk communication to enhance informed uptake of cervical screening. British Journal of General Practice. 2003;53(493):620-5.
- 15. Eaker S, Adami H-O, Sparén P. Attitudes to screening for cervical cancer: a population-based study in Sweden. Journal of Cancer Causes and Control. 2001;12(6):519-28.
- 16. Marteau TM, Hankins M, Collins B. Perceptions of risk of cervical cancer and attitudes towards cervical screening: a comparison of smokers and non-smokers. Journal of Family Practice. 2002;19(1):18-22.
- 17. Ekechi C, Olaitan A, Ellis R, Koris J, Amajuoyi A, Marlow LA. Knowledge of cervical cancer and attendance at cervical cancer screening: a survey of Black women in London. BMC Journal of Public Health. 2014;14(1):1096.
- 18. Kivistik A, Lang K, Baili P, Anttila A, Veerus P. Women's knowledge about cervical cancer risk factors, screening, and reasons for non-participation in cervical cancer screening programme in Estonia. BMC Journal of women's health. 2011;11(1):43.
- 19. Azerkan F, Widmark C, Sparén P, Weiderpass E, Tillgren P, Faxelid E. When Life Got in the Way: How Danish and Norwegian Immigrant Women in Sweden Reason about Cervical Screening and Why They Postpone Attendance. PLOS ONE. 2015;10(7):e0107624.
- 20. Acar GB, Pinar G. Perspectives of women during reproductive years for cervical cancer scans and influencing factors. Asian Pacific Journal of Cancer Prevention. 2015;16:7171-8.
- 21. Tacken MAJB, Braspenning JCC, Hermens RPMG, Spreeuwenberg PMM, van den Hoogen HJM, de Bakker DH, et al. Uptake of cervical cancer screening in The Netherlands is mainly influenced by women's beliefs about the screening and by the inviting organization. European Journal of Public Health. 2007;17(2):178-85.

- 22. Marlow LA, Waller J, Wardle J. The impact of human papillomavirus information on perceived risk of cervical cancer. Cancer Epidemiology and Prevention Biomarkers. 2009;18(2):373-6.
- 23. Kuitto K, Pickel S, Neumann H, Jahn D, Metelmann H-R. Attitudinal and socio-structural determinants of cervical cancer screening and HPV vaccination uptake: a quantitative multivariate analysis. Journal of Public Health. 2010;18(2):179-88.
- 24. Grigore M, Popovici R, Pristavu A, Grigore AM, Matei M, Gafitanu D. Perception and use of Pap smear screening among rural and urban women in Romania. The European Journal of Public Health. 2017;27(6):1084-8.
- 25. Johnson CE, Mues KE, Mayne SL, Kiblawi AN. Cervical Cancer Screening Among Immigrants and Ethnic Minorities: A Systematic Review Using the Health Belief Model. 2008;12(3):232-41.
- 26. Chan CWH, Yang S-B, Gu C, Wang X, Tao L. Perception of Cervical Cancer Risk and Screening Behavior: A Literature Review. International Journal of Nursing Knowledge. 2014;26(1):2-18.

Citation: Quach Ha Linh, "Cervical Cancer Screening's Predictors in European Countries: A Systematic Review". American Research Journal of Public Health; 1(1): 1-13.

Copyright © Quach Ha Linh, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

American Research Journal of Public Health