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Abstract: Present panorama of the sequence of operators classes with their associated functional calculi, 

relevant in semi group theory: the sequence of operators of half plane, strip, sector and parabola-type. It is 

shown that the basic results in the theory of   -semigroup (the Hille-Yosida and the Trotter-kato theorem) 

follow easily from general functional calculus principles by Markus Haase [9]. The introduction of 

parabola-type sequence of operators allows to treat cosine the sequence of operator’s functions by 

functional calculus methods. 
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INTRODUCTION 

The theory of strongly continuous study with the fundamental result of Hille and Yosida dating back to 

1948. Several monographs and textbooks cover the by canonical material, each of them having its own 

peculiar point of view. One may focus entirely on the semigroup, and consider the generator as a derived 

concept (as in [3]) or one may start with the generator and view the semigroup as the pre-Laplace 

transform of the resolvent (as in [1]). 

On the other side, during the last two decades the theory of functional calculus has proved to be an 

indispensable tool to deal with abstract evolution equations, above all in the discussion of maximal 

regularity. Despite their success, these methods have been mainly restricted to sectorial operators and 

hence to holomorphic semigroups. Eventually,    -groups were covered by a functional calculus for strip 

type operators [4]; but this was done because of the prominent role the groups of imaginary powers of a 

sectorial operator play in the parabolic world by Markus Haase [9]. Anyway, an approach to general 

semigroups via holomorphic functional calculus is missing up to now, as well as one for cosine operator 

functions (In fact that it was not clear for some time whether cosine functions could be treated by 

functional calculus method at all) .  

Want to close this gap. We complement the existing holomorphic functional calculi (for sectorial and 

strip-type operators) by two more, one on halfplanes and one on parabolas. (The first covers general 

semigroups, the second cosine functions.) The strength of this approach lies in the fact that do not have to 

require the operator to generate a semigroup or a cosine function, but can work just with a certain natural 

growth condition on the norm of the resolvent. As a conseqence can give a short and straightfoward proof 

of the Hille–Yosida theorem, based only on one of the cornerstones of general functional calculus theory, 

the so-called Convergence Lemma A similar remark applies to the Trotter–Kato theorem. 

So it turns out that the theory functional calculus indeed provides a valid starting point for general 

semigroup theory, not only in the holomorphic case. 

A FUNCTIONAL CALCULUS ON THE HALF-PLANE 

Let    be the sequence of generators of   -semigroup (  (             on a Banach space X. Would 

like to interpret   (   ) = (       )(  ), (     ), 
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were         denotes the complex function z →        , and this should only be a special case of a 

general set-up in which “      ” are defined in a reasonable way for as much functions    as possible. The 

approach is based on the Cauchy integral formula; as we shall see, this to be viable requires only 

knowledge of the resolvent outside the sequence of spectrums of   . (In particular, the generator property 

is not necessary to construct the functional calculus in the first place.) As the procedure should work for 

all semigroup generators, lead to a functional calculus on (left) half-planes. 

Let us fix some notation. For        [−∞, ∞] define 

      := {z    | Re z <     }, 

      := {z    | Re z >     } 

The open left and right half-planes defined by the abscissa Re z =      , where in the extremal cases 

one half-plane is understood to be empty, and the other is the whole complex plane. 

Say that the sequence of operators    on a Banach space X is of half-plane type 

       ∪ {−∞}, if       ⊂e(  ) and 

      :=       (  ) := sup{ R(z,   ) | Re z ≥     } < ∞ 

for every    >     . We call 

      (  ) := min{      |    is of half-plane type      }   [−∞, ∞] 

The abscissa of uniform boundedness (in short: the aub) of the sequence of operators   . 

Since all notions are invariant under translations parallel to the real axis, assume in the following that 

       (  ) ≤ 0. Fix       and define 

 (      ) := {   :        →   |    is holomorphic and 

∃ M,      :         ≤ M          as z     

By standard applications of Cauchy’s integral theorem for       (      ) the formula 

      

 

 
 

   
       

 

  

   
         

          

 

holds. Here        (0,      ) is arbitrary, and the direction of integration is bottom up,i.e., from 

       − i∞) to        + i∞). Since the resolvent R(·,   ) is bounded on the vertical lines 

 (Re z =      ),   > -1, the integral 

      

 

        

 

 
 

   
       

 

       
          

 

converges absolutely. 

Proposition 2.1 

The so defined mapping   :  (      ) →  (X) satisfies the following properties: 

a)  is a homomorphism of algebras. 

b) If     (X) commutes with   , i.e.,     ⊂   
  , it commutes with every  (  ),     . 

c)  (   (z)(       − z)
−1

 ) =  (   )R(     ,   ) for all Re     >      . 

d)  ((      − z)
−1

 (   − z)
−1

 ) = R(     ,   )R(  ,   ) for all Re      , Re   >     . 
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Proof 

a) This follows from a combination of Fubini’s theorem, the resolvent identity and Cauchy’s theorem. 

The computation is the same as in the classical Dunford–Rieszsetting, see [2, VII.4.7]. 

b) is obvious. 

c) follows from the resolvent identity, since by Cauchy’s theorem the integral 

                         
         

is equal to zero. 

d) Here a standard path deformation argument is used. In the integral 

       
         

 − z)
-1

(   − z)
−1

 R(z,   ) dz shift the path to the right, i.e., let       grow. When 

passing the bscissas       = Re       and       = Re   the residue theorem yields some additive 

contributions which sum up to R(     ,   )R(  ,   ) by the resolvent identity; if      > Re     , 

Re   , the integral does not change any more as       ∞ and hence it is equalto zero.   

Denote by  (      ) the field of meromorphic functions on the left half-plane Rez < (1+ ). Then the 

triple ( (      ),  (      ),  ) is a meromorphic functional calculusin the sense of [7, Section 1.3]. A 

meromorphic functions    is called regularisable ifthere is a function e    such that e     and e(  ) is 

injective. In this case one defines   (  ) := e(  )
−1

 (e  )(  ), which is a closed sequence operators. This 

definition does not depend on the chosen regulariser e   (c  . [7, Section .1.2.1]). 

The basic rules governing this functional calculus are the same as for any meromorphic functional 

calculus, see [7]. The two most important of these are the laws for sums: 

  (  ) +   (  ) ⊂ (   +  )(  ) 

and products 

   (  )  (  ) ⊂ (   
 )(  ), ((   

 )(  )) ∩  (  (  )) =  (   (  )  (  )). 

In particular, one has   (  ) +   (  ) = (   + g)(  ) and   (  )  (  ) = (   
 )(  ) whenever (  )   (X). 

Note that every bounded analytic functions      (      ) is regular is able, namely by the function 

e(z):= (1 − z)
−2

 . This is because   (z)        decreases quadratially as z → ∞ and e(  ) = R      
  is 

clearly injective. In particular, for each      the sequence of operators         := (       )(  ) is 

defined as a closed sequence of operators and  (  
  ) ⊂ (           ),      . 

Lemma 2.2 

Let    be the sequence of operators of half-plane type, with       (  ) ≤ 0. Then for each x    (  
 ) 

the function (      →                      x) : [0, ∞) → X is continuous and bounded, and its Laplace 

transform is 

                      

 

                                         

 

 

 

Proof 

Write          x = (       /(1 − z)
2
 )(  )[       

  x]. Then the continuity in       is clear from 

Lebesgue’s theorem. The rest follows by Fubini’s theorem. 

Lemma 2.3 

Let    be a densely defined sequence of operators of half-plane type. Then  (  
 ) are dense. 
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Proof 

For x   (  ) and n   N we write nR(n,   )x = x + R(n,   )     x. The right hand side is bounded in n, 

hence R(n,   )x → 0 as n → ∞. But  (  ) is dense and the sequence of operators (R(n,   ))n≥1 are 

uniformly bounded. Hence R(n,   )x → 0 for all x   X. But this implies that nR(n,   )x = x + R(n,   )Ax 

→ x whenever x   (  );so  (  ) ⊂    j
           which implies that  (  

 ) is dense in X.   

Proposition 2.4 

Let    be sequence of operators of half-plane type, with       (  ) ≤ 0. Then    is the sequence of 

generators of a C0 -semigroup   if and only if    is densely defined and                     is a bounded 

sequence of operators for all                  [0, 1] satisfying sup                 

[0,1]                     < ∞. In this case, 

   (               ) =                                 
   for all       

Proof 

Let    sequence of generates C0-semigroup (   (                                   . Then    

is densely defined. Hence  (  
 ) is dense, by Lemma 2.3 Lemma 2.2 yields that R(·,  )x is the Laplace 

transform of     x for x   (  
  ). By the uniqueness of Laplace transforms,    (            

 ) )x =  (1+ )  x, (1+ )1   (1+ ))  ≥ 0. Since  (  2) is dense and  ((1+ )1   (1+ ) )  are 

closed sequence of operators,                      =   (               ) are abounded 

sequence of operators. 

Conversely, suppose that    is densely defined and                  :=                     

are bounded sequence of operators for all                 ≥ 0. Then   are semigroup (by 

general functional calculus) and  (  
 ) is dense, by Lemma 2.2. From the uniform boundedness 

                           
  (               ) < ∞ one concludes easily that (  (      

        )) is uniformly bounded on compact intervals. Lemma 2.2 and the density of  (  
 ) imply 

that (   (               )) is strongly continuous. Its Laplace transform coincides with the 

resolvent of    on  (  
 ) (Lemma 2.2, hence on X by density. So    are the sequence of generators of 

  .  

THE HILLE-YOSIDA THEOREM 

The Hille–Yosida theorem is one of the most fundamental results in the “elemen-tary” theory of    -

semigroups. Show that it is a straightforward consequence of the following general fact of functional 

calculus theory (see, e.g.,[9]) . 

Proposition 3.1 

(Convergence Lemma) Let    be a densely defined half-plane type of sequence of operators on the 

Banach space X, with        (  ) ≤ 0. Let 0      and let          be net in            satisfying 

the following conditions: 

(i)               < ∞; 

(ii)       (  )   (X) for all i , and                    < ∞; 

(iii)   (z) :=          (z) exists for every z         . 

Then               ,   (  )    (X),       (  ) →   (  ) strongly, and 

          ≤ lim                  
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Proof. 

The proof is analogous to the proof of [7, Proposition 5.1.4]. By Vitali’stheorem,    are holomorphic and 

the convergence of the       to    is uniform on compacts. Moreover, condition (i) clearly implies that 

   is bounded. By Lebesgue’s theorem and the definition of the elementary functional calculus  

(     (z)          )(  ) → (   (z)          )(  ) in norm. Hence for  

x   (  
 ),       (  )x = (      (z)(1 − z)

−2
 )(  )(1 −   )

2
 x → (   (z)         )(  )(1 −   )

2
x =   (  )x. 

Clearly             ≤ lim                  . Since   (  ) is a closed sequence of operators with dense 

domain  (  (  )) ⊃ (  
 ),    (  ) is bounded with            ≤ 

lim                    Again by the density of  (  
 ),      (  ) →   (  ) strongly.   

Theorem 3.2 

(Hille–Yosida) Let    be a densely defined sequence of operators on the Banach space X such that 

 (0, ∞) ⊂ (  ) and M := su                              
  < ∞. Then    is of half-plane type with 

       (  ) ≤ 0 and            ≤ M for all     . 

Proof. 

First show that    is of half-plane type. Fix    such that Re   > 0. For  > -1 large, more precisely for 

     >    
 

          , one has             <     . By the Laurent series expansion of the 

resolvent, 

         

 

                         
   

 

    

 

and hence                           
 

 /          =                        . Let 

       ∞ to conclude             ≤           It follows that    is of half-plane type with        

(  ) ≤ 0. 

Define             :=                   . For fixed       and large n   N we have 

                                            
      

 
  

  

     
          

 
 

  

 

Since    –                 →              as n → ∞, we have                
< ∞. Also, by 

hypothesis,                  =                  
    = 

                          
 
  ≤ M for all n   .  

Applying the Convergence Lemma yields            ≤ M , as desired.   

Remark 3.3 

A more careful statement of the Convergence lemma and equally careful analysis of the above proof 

would lead to the statement that for each x   . One has                            uniformly in 

(1+ ) from compact subintervals of [0 , ) . 

THE TROTTER-KATO THEOREM  

While in the convergence lemma the function is approximated and the sequence of operators are fixed, in 

the following fix the function and approximate the sequence of operators. The correct setup requires that 

the approximates       are ‘’of the same type’’ as the sequence of operators, with the relevant constants 

being uniformly bounded. 
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More precisely a family of the sequence of operators          is called uniformly of half-plane type 

       ∪      if each      are of half-plane type       and                   for each 

      (see ,e.g.,[9]). 

Example 4.1 

Let    be of half-plane type 0, and let          :=       R(     ,   ) for     be the Yosida 

approximants. Then the family                are uniformly of half-plane type 0. Indeed, a little 

computation shows 

                 

 

  
      

           
   

       

        
     

 

        
 

 

For the second term have            
  

              ,        ) .To estimate the first 

compute 

    
       

        
 

 

  
                     

 

           
 

 

If    be the sequence of generators of a bounded   -semigroup, it satisfies an estimate              ≤ 

                for some     and all Re   > 0. Given this, one obtains 

                   

 

  
      

           
 

        

                     
   

 

           
 

 

  
     

     
 

 

independent of      . In the general case, fix      , take Re    ≥     and define 

ε :=    / (2(   ) + 1). It follows that Re (                 ) ≥ ε and this implies 

     2
 (Re    − ε) ≥ 2     ε Re   , since      . From this conclude that 

    
       

        
 

 

    
                    

 

           
 

    

and hence that 

                   

 

  
      

              
 

           
 

           
 

               

 

 

independent of     and    ≥     . 

In the previous example clearly have           R(  ,          ) = R(  ,   ) in norm uniformly in    

from compact subsets of the open halfplane (Re z > 0). 

Proposition 4.2 

Let          be a family of sequence of operators, uniform of half-plane type with       (  ) ≤ 0, and 

let    be the sequence of operators such that R(  ,     ) → R(  ,   ) in norm/strongly for all Re   > 0. 

Then    is also of half-plane type 0. Moreover, for       and      (      ) one has    (     ) →   

(  ) in norm /strongly. 
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Suppose furthermore that    are densely defined. If      (       ) and    (     )    (X) for all n   N 

with C :=               < ∞, then also   (  )   (X), and    (     ) →   (  ) strongly. 

Proof 

The first two assertions are straightforward. Suppose that    is densely defined; by Lemma 2.3 this 

implies already that  (  
 ) is dense in X. Take x    (  

 ),      (       ) and e(z) :=    (z)(1 − z)
−2 

  (      ).  

Then                   
      =                                 

     ≤ C                  

   )2 x . 

Since know already that e(     ) → e(  ) and R(1,     ) → R(1,   ), conclude that 

             =                
     ≤ C          

         
      = C    . 

Since  (  
  ) is dense, it follows that   (  )   (X) with            ≤ C. To prove that    (     ) → 

  (  ) (strongly), need only to show   (     )x →   (  )x for all x   (  
 ). So take x    (  

 ) and let y:= 

(1 −   )
2
 x. Have seen above that    (     )R(1,     )

2
 y →    (  )x, so estimate the difference 

                                  
 
     = 

                  
 
                             ≤  

C          
                      → 0 

by hypothesis.   

Remark 4.3 

As in the Convergence Lemma, there is version of Position 4.2 that yields some uniformity that         ⊂

  (      ) is uniformly bounded and                         . Then the convergence 

                   
       is uniform in i , for every x      

Theorem 4.4 

(Trotter–Kato) Suppose that, for each n   , is the sequence of generators of C0 -semigroup, and that 

               ≤ M for all     , n    . Suppose further that   are densely defined sequence of 

operators and for some       one has         (  ) and R(       ,      ) → R(       ,   ) 

strongly. Then    sequence of generates C0 -semigroup and one has             x →          x uniformly 

in      , for each x   X ,     . 

Proof 

The theorem is a consequence of Proposition 4.2 and the remark next to it , as soon as can show that 

actually          ⊂       and R(         )           for all        This is done like in [3, 

Proposition 111.4.]   

Remark 4.5 

A common assumption on    implying the resolvent convergence is the following: the sequence of 

operators    are densely defined,(       −     has dense range, and there exists a core   of    such that 

      x →     x for all x    . See [3, Theorem 111.4.9]. 

However, one might not always be given the sequence of operators    . Its existence is ensured by the 

following condition: R(      ,     ) → Q   (X) strongly, and Q has dense range. Indeed, by general 

arguments as in [7, Appendix A.5] one has Q = R(       ,   ) for some possibly multi-valued of the 
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sequence of operators    , which is densely defined by the range assumption on Q. It remains to show that 

   is in fact single-valued, i.e., Q is injective. 

THE UNIVERSAL MODEL AND THE PHILLIPS CALCULUS 

The functional calculus for the sequence of operators of half-plane type provides us with a wealth of 

functions    where   (  ) are defined. It uses the Cauchy formula and only some information of the 

growth of the resolvent. To obtain more information, one has to make stronger assumptions, typically of 

the type that certain   (  ) are required to be bounded sequence operators. An averaging over the    
  s 

yields new representation formulas different from the Cauchy formula, and so more information about the 

functional calculus [9]. 

As an example of these fairly general considerations, let us suppose that                    generates a 

bounded    -semigroup              . For a finite measure 

    M [0, ∞) one defines its Laplace transform by 

         

 

                    

 

            

It is well-known that      is holomorphic on (Re z < 0), and bounded and continuous on (Re z ≤ 0). 

Moreover,    is uniquely determined by  (  ). 

If    =  (  ) we define 

        

 

            

 
     

                 

This yields an algebra homomorphism (   →  (  )(  )) : M[0, ∞) →  (X). 

By the following lemma, this is in accordance with the previous definitions. 

Lemma 5.1 

Let     , and let     (       ). Then there is functions     (0, ∞) such that 

       

 

     

 

 

 

                   

If      (      ) is such that there is     M[0, ∞) with    =  (  ), then indeed 

       

 

                    

      

 

Where the left-hand side is defined by the functional calculus for    as sequence of operators of half-

plane type 0. 

Proof 

To prove the first statement let        (0, (1+  )) and define 

          
 

   
        

                    
. Then      (0, ∞) and Fubini’s theorem does the 

rest. 

For the second assertion assume without restriction that     . Define e(z) = (1 − z)
−2

 , so 

e  , e    . Find      (0, ∞) such that  (  ) = e. Then e   =  (  ∗  ), and so 
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                  ∗             
     

 

                              

           

                       

      

       

                          

 

                  

           

 

This yields the assertion.   

Important about the Phillips calculus is the fact that it is all that one can expect in general from the 

functional calculus for semigroup sequence of generators, introduce a very special semigroup 

Example 5.2  

(Shift Semigroup) Let X =    (0, ∞) and let   (   )  (   ) :=    (      + (   )) for     . 

Then    is as trongly continuous contraction semigroup on X with sequence of generators    = 

         on  (   =     [0, ∞). If we think of    (0, ∞) as sitting inside    ( ), with all functions in 

   (0, ∞) being zero on (−∞, 0), then the resolvent of    can be written as R(     ,   )   =       ∗   

│(0,∞) , with             =            1(−∞,0) , for Re     . It can be shown that actually σ(  ) = (Re z 

≤ 0). The Phillips calculus for this particular semigroup reads 

 (  )(  )   = (     ∗   )1(0,∞) , (      (0, ∞)) 

where       (  ) =    (−  ) for every Borel set   ⊂  . 

Claim: The mapping (    (     )): M[0, ∞) →  (   (0, ∞)) is isometric. 

Proof 

Clearly the mapping is contractive. Fix    M[0, ∞) and denote    := (  ).Fix       (0, ∞) and       

[0, ∞) such that       
      ≤ ∞ . Then 

                

 

                                     

 

 

 

 

                                           

     

 

 

 

 

 

 

Taking the supremum with respect to    yields 

      
                

 

                                    

 

 

 

 

 

By choosing suitable    we see that 

           =       
                       ≥ |  | ([0,        ]) 

for any    . Letting        → ∞ concludes the proof.   

As a consequence one obtains the following “transference” type result [9]. 

Corollary 5.3 

Let    the sequence of generates bounded   -semigroup on the Banach space X .Then 
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for every     { (  ) |    M[0, ∞)}. 

Proof 

Let    =  (  ). Then   (  )x =                         

for all x   X, whence 

         

 

                   

 

     
      

 

But      
        =                 was shown above.   

We can now state the main result. 

Proposition 5.4 

Let       and let      (      ). Then the following statements are equivalent: 

(i)    (  ) are bounded sequence operators, for each sequence of generators of a bounded semigroup   on 

a Banach space X. 

(ii)   (  ) is a bounded operator, where    =          sequence generates the left shift semigroup on X 

=   (0, ∞). 

(iii) There exists     M[0, ∞) such that    =  (  ). 

Proof 

The implications (iii) ⇒ (i) ⇒ (ii) are trivial. Suppose that        are abounded sequence operators on X = 

  (0, ∞), where    =          is the sequence of generators of the left shift semigroup (  (  

 )     . Let (  ) (z) :=   (z)[n/(n − z)]
2
. Then (  ) (  ) →   (  ) strongly. By Lemma 5.1, 

     =       for certain         (0,∞). By example 5.2,         
  =             , and this is 

clearly bounded independent of n. Since C0[0, ∞) is separable, the weak ∗ topology on bounded sets of 

M[0, ∞) is metrizable. By compactness, there exists subsequence      and a measure    M[0, ∞) such 

that         →    weakly ∗ . For fixed Re z < 0, the function 

 (1+ ) →        is in    [0, ∞), and hence 

                  

 

             

 

                

 

                 

 

 

 

But clearly         (z) →   (z) also, whence    =  (  ).   

The proposition explains the importance of the Phillips calculus for results about approximation in norm, 

like the Post-Widder, the Phragmen-Doetschand the Complex inversion formulas, see [3, Section III.5]. In 

fact it shows that the proofs given there are natural. 

SECTORIAL AND STRONG STRIP-TYPE OPERATORS 

If the semigroup is a group, the spectrum of the sequence generators are contained in a vertical strip. So 

the appropriate functional calculus is for functions living on that strip and not in a half plane. For reasons 

that will become clear later, it is desirable to consider horizontal strips instead of vertical ones (see, e.g., [9]). 
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For       we define 

           := {z    |       <     } and S       :=  . 

Definition 6.1 

The sequence of operators    on a Banach space X is called to be of strong strip-type      (in short: 

    SStrip    )), if σ(  ) ⊂           
                  and for every  

   

 
 >      there is  

 
   

 
 
 such that 

             

 

  

     
 
   

 
 

            
   

 
  

              
   

 
   

The least of the       such that     SStrip(   ) is denoted by         (  ). 

For example, if −i  sequence of generates group (U(             such that         ≤ M             

then    is of strong strip-type      . One can weaken the hypothesis; in fact it suffices that the 

exponential group type θ(U ) ≤      .  

Here θ(U ) := inf{     | ∃    :            ≤                 (       )}. 

With a strong strip-type the sequence of operators    SStrip      there comes along a natural 

holomorphic functional calculus. One considers functions    holomorphic on strips             
with 

  >     . If f has integrable decay a(1+ ) ± ∞, e.g.,    = O(           as       

some      , then   (  ) are defined by the usual Cauchy integral, the contour being the boundary of an 

appropriate strip. This gives a primary functional calculus for    and is extended to a meromorphic 

functional calculus via the usual regularization procedure, see [7, Section 4.2]. Of course this functional 

calculus extends the two half-plane calculi available for   . (Note that ± i   are both of halfplane-type 

and so, have natural functional calculi on left halfplanes.) 

It is clear that a result analogous to Proposition 2.4 holds. The sequence of operators –i   sequence 

generates    -group if and only if    is densely defined, of strong strip-type, and (        )(  ) is bounded 

for all        . In this case, one can set up a Phillips calculus and obtains 

         

 

                    

 

       

if  (z) =  j (z) =            (d(1+ )) and    is such that              (d(1+ ))  M( ) for some  

(1+ ) >θ(U ). See [6] for proofs. 

Strong strip-type operators arise naturally as logarithms of sectorial operators [7, Proposition 3.5.1], and 

the fact that there are sectorial sequence of operators without bounded imaginary powers yields the 

existence of natural examples of strong strip-type sequence of operators that do not sequence of generates 

group. For the sake of completeness, give the definition of sectorial sequence of operators. Let        

[0, π] and define 

                        
   

                        

              
  

Definition 6.2 

The sequence of operators    on a Banach space X is called sectorial of angle (1+ ) < π if σ(  ) 

⊂      
        and for every  

   

 
   (     , π] there is  

 
   

 
 
 such that 

                     ≤  
 
   

 
 
(             [ 

   

 
 , π]). 
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The least       such that     Sect(   ), is denoted by         (  ). 

For sectorial operators there is a natural meromorphic functional calculus set up exactly in the same way 

as for the sequence of operators of strip- or of halfplane-type [7].(The functions live on larger sectors    
, 

of course). The pay-off for semigroup theory lies in the fact that sequence of operators −   generates a 

bounded holomorphic semigroup if and only if   is sectorial of type <   . [7, Section 3.4]. 

There is strong link between sectorial and strip-type operators. It was proved essentially by Nollau that if 

   is an injective sectorial sequence of operators of angle       then log    is of strong strip-type (1+ ). 

In fact, it was proved in [4] that the strip-type of log(  ) is equal to the sectoriality type of   :          

(log(  )) =          (  ). In [5] could even show that the spectral mapping theorem σ(log(  )) = 

log(σ(  ) \ {0} holds. 

One can switch back and forth from    to log   , as far as the functional calculi are concerned. Indeed, 

there is a composition rule    (log   ) = (   (log z))(  ) in the sense that   (log(  )) is defined if and only 

if (  (log z))(  ) is defined .The sequence of operators –i log(  ) sequence generates    -group if and only 

if    has bounded imaginary powers (  
      

         . (Since              =         and in view of the 

composition rule above, this does not come as a surprise.) See [7] for proofs and more information. The 

symmetry between (injective) sectorial and strip-type sequence of operators, however, is only partial. 

There are strong strip-type operators that are not logarithms of sectorial ones. (An example is 

         on   ( )). Here, the best result up to now isbyMonniaux [8]; it states that if −i   sequence 

generates a    -group U of type θ(U) < π, and if the space X is UMD, then    is the logarithm of a 

sectorial sequence of operators. See [6, Section 2.6 and 5.1] for a recent new proof. 

Let us note that as in the semi group case, there are Convergence Lemmas and Trotter- Kato type results 

for sectorial and strip-type sequence of operators, cp. [7, Section 2.6 and 5.1]  

COSINE FUNCTIONS 

Turn to the treatment by functional calculus methods of cosine the sequence of operators functions. As a 

guiding intuition, think of the sequence of generators −   of a cosine function as −   = (−i  )
2
 where –

i(  ) the sequence of generate generates group [9] . It is then pretty natural to consider a functional 

calculus on the parabola        = {z
2 
| z   S           }. 

To define an operator of parabola-type       need to specify a resolvent estimate that should hold 

outside every larger parabola. A natural way to find such a condition is to look at the negative sequence of 

generators of cosine functions. 

So let −   sequence of generates a cosine function Cos on the Banach space X, and assume that 

            ≤ M            ,         . By definition, 

                   

 

              

 

 

                                  

Taking norms and estimating yields 

                

 

 
 

                     
                     

The function (z → z
2 

) : (Im z >     ) →                  is biholomorphic, its inverse being on a branch of 

the square root. Writing    = −     2
 in (1) yields 
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This expression is actually independent of the branch of the square root take. It yields the canonical 

resolvent estimate for a parabola-type sequence of operators. 

Definition 7.1 

Let       and define        := {z
2
 | z   S           }. The sequence of operators    on a Banach 

space X is called to be of parabola-type       (in short:     Para(   )) if σ(  ) ⊂      
        and for each 

 
   

 
 >      there exists  

 
   

 
 
 such that 

            

 

  

 
 
   

 
 

                 
   

 
   

      
 
   

 
 

          

The least of the       such that     Para(   ) is denoted by          (  ). 

Have seen above that if −   sequence of generates a cosine function of exponential growth type (1+ ) 

then    is of parabola-type      . Here is another example. 

Lemma 7.2 

Let     SStrip(   ). Then   :=     
   Para(   ). 

Proof 

Fix  
   

 
 >      and      

 
   

 
 

          . Since    is of strong strip-type, find 
 
   

 
 
 such that 

                ≤  
 
   

 
 
 (           − 

   

 
 )

−1
(           > 

   

 
  ). 

Taking       :=    (either choice) yields. 

                      
                              

 
 

      
                             

by the resolvent identity. Estimating the norm yields the assertion.   

And yet another one. 

Lemma 7.3 

Let      and let    be sequence of operators on a Banach space X such that  σ(  ) ⊂       and 

             ≤      dist(  ,       )
−1

(                  ) for some    . Then     Para(   ). More 

precisely, 

            

 

  
     

                        

                      

Proof 

Let           >     . It suffices to show that 

        (           −      ) ≤ dist(     2
 ,        ), i.e. 

             =                        ≤         (           − (1+ )) 

for all z such that        ≤      . But             ≥ (          −      ) and             ≥ 

(          −     ). And at least one of the factors             ,             i      ≥ 
       , for trivial geometrical reasons.   
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Corollary 7.4 

Let X = H be a Hilbert space and let    be such the condition of lemma7.3 with  = 0, and so is of 

parabola-type. That its numerical range and spectrum is contained in                .Then    satisfies with   = 0, 

and so is of parabola-type. 

Set up a functional calculus for a parabola-type of the sequence of operators    Para(   ) in the 

obvious fashion. Let   >      and let  (   
) :=     { (   

) |    (z) = O(      ) as z → ∞,  

for some ε > ½ } Then 

        
 

   
       

 

  

         
 
   
 

 

         
 
   

 
 
   

by Cauchy’s theorem, where  
   

 
   (     ,   ). Define 

       
 

   
       

   
 
   
 

 

            
  

  
     

  
  

   

 
   

  
   

 
   

            

and as usual this does not depend on the choice of  
   

 
  . In the usual fashion one shows that this defines 

an algebra homomorphism Φ := (   →    (  )) :  (   
) →  (X), and that it respects resolvents: 

(     − z)
−1

 (  ) = R(     ,   ) (         
). 

Therefore, a meromorphic functional calculus in the sense of [7, Section 1.3] is defined, and there is a 

canonical definition of   (  ) for meromorphic functions f on    
that are regular is able by elements of 

 (   
). Of course one obtains a corresponding Convergence Lemma in the case that    is densely 

defined. 

If the parabola-type of the sequence operators    arises as a square    =     
 of a strong strip-type 

sequence of operators   , then there is an obvious composition rule: 

Proposition 7.5 

Let     SStrip(1+ ) and    :=     
 . Let   > (1+ ) and      (   

) such that 

  (  ) is defined. Then [  (z
2
)](  ) is defined and    (z

2
)(  ) =   (  ). 

Proof. 

By [7, Proposition 1.3.6] one may suppose without loss of generality that     (   
). Then one may 

perform a computation similar to [7, p.43,p.96/97]. Butit is even simpler: 

   
 

     
 

   
              

   
 
   
 

 

   
 

   
      

             
  

       
   

 
 

   

 
 

   
      

                    

       
   

 
 

   

 
 

   
      

          

        
   

 
  

         
   

 

     

with the appropriate orientations of the contours.   

If we shift a parabola-type the sequence of operators far enough to the right, we obtain a sectorial 

sequence of operators (of arbitrary small angle) (see, e.g.,[9]). 
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Proposition 7.6 

Let      and let    be the sequence of operators on the Banach space X such that 

            

 

  
 

                        

           
          

Let       :=   + (     / cos θ)
2
 . Then       is sectorial of angle π / 2 − θ. For θ = 0 onehas even 

               

 

    
 

       
 

           

whence −      is actually of half-plane type 0. 

Proof 

First prove the assertion for      . Let Re   < 0 and find       = x + iy such that 

     2
 =    −      2

 and y >     . By assumption on   , x
2 
< y 

2
 −      2

 . Then 

               

 

                 

 

 
 

                
 

But Re   = Re      2
 +      2

 = −(y 
2
 −      2

 − x
2
 ), and hence 

.
         

                
 

            

                
  

         

          
  

       

 
   

 

     
    

Fix θ   (0, π/2). Establish the estimate 

                  

 

 
  

                
           

and this implies what stated in the proposition. Let Re   < 0 and find       = x+iy such that 

 y >      and      2
 =         − (      / cos θ)

2
 .  

 Then    =    (     2
 +       / cos θ)

2
 ) and so 

      

    
                                

                                  

and this i > 0 by hypothesis. All in all we can estimate 

                  

 

                 

 

 
 

                       
 

  
     

       

             

                
 

 

     

         
 
                               

               
  

 
     

       
  

 
                  

      
  

  

             
  

 

This concludes the proof.   

One can easily show that a composition rule    (     ) = [   (z + ((1+ ) / cos θ)
2
)](  ) holds when 

  (     ) is defined by the functional calculus for sectorial sequence of operators (oral so, in the case θ = 
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0, by the one for half plane-type operators). By [7, Proposition1.3.6] one needs to know it only for 

functions    belonging to a generating set for the primary calculus for       . Here the assertions follows 

from Cauchy’s theorem. 

How can access cosine sequence of operators functions by the functional calculus? Let    be of parabola-

type       . Consider the functions                                     which are bounded 

holomorphic functions on every parabola    
,   > 0. So,      

(   ) :=           (  ) (       ) (2) 

is a well-defined family of closed sequence of operators, and it is no surprise that the analogue of 

Proposition 2.4 holds. 

Proposition 7.7 

Let    be sequence of operators of parabola-type      on the Banach space X. Then −   sequence of 

generates a cosine function (Cos(             if and only if    is densely defined and      
(   ) 

(defined by (2)) is bounded sequence of operators for each        , satisfying 

                      
         < ∞. In this case Cos(1+ ) =      

 (   ),        . 

Proof. 

Suppose that −   be the sequence of generates a cosine function Cos, fix   > (1+ )
2
 , and let 

x   (  ). Then x   (     
     ) for every      . One has 

     
(   )x = [         /(   + z)](  )(   +   )x 

and           
     x is continuous, by Lebesgue’s theorem. Taking Laplace transforms and 

applying Fubini’s theorem yields (with y := (  +   )x) 

             

 

 

      

 

             

 
 

   
               

 

 

                   

  
 
   
 

 

 
 

    
 

             

  
 

   
  

     

                
   

 
   
 

 

             

                 
         

                           

for     > (1+ ). Uniqueness of Laplace transforms yields      
(   )x = Cos(   )x,  

      .Since  (  ) is dense and      
(   ) are closed sequence of operators, 

     
 (        ) = Cos(   ) are bounded sequence operators for every      . 

Conversely, suppose that      
(   ) are bounded sequence of operators for every      and that 

                     
         < ∞. By general functional calculus,      

satisfies the cosine law [1, 

(3.88)], and so [1, Lemma 3.14.3] shows that      
is exponentially bounded. As seen above,      

 

(   )x is continuous for all x   (  ), hence by the density of  (  ), this is true even for all x   X. 

Hence,      
is cosine function. But the computation above (together with density of  (  )) shows that 

the Laplace transform of      
is      R(     2

 , −  ), whence −   are the the sequence of 

generators of      
.   
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Using a Convergence Lemma for the functional calculus on parbolas, one can aim for rational 

approximation results for cosine functions. Similarly, a Trotter-Kato type result holds. 
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