American Research Journal of Mathematics ISSN-2378-704X Volume 3, Issue 1, 4 Pages

Research Article

Hodges Conjecture Clay Institute Millennium Problem Solution

Paul T E Cusack, BScE, DULE

23 Park Ave., Saint John, NB, Canada E2J 1R2 St-mcihael@hotmail.com

Abstract: Here we consider the Hodge's Conjecture that expresses when a projective manifold coincides with a sum of algebraic cycles. More generally, this entails the convergence of geometry and calculus which has been discussed in this author's previous paper.

Keywords: Hodge's Conjecture; Polynomials; Analytic sums; Geometry; Calculus.

INTRODUCTION

In his paper, we consider the Hodge's Conject Clay Institute Millennium Problem solution. That problem is described as follows:

HODGE CONJECTURE

Let X be a non-singular complex projective manifold. Then every Hodge class on X is a linear combination with rational coefficients of the cosmology classes of complex sub varieties of X.

The Problem

The Hodge Conjecture addresses the following natural question:

Let X be a projective manifold. Suppose C is a topological cycle on X. When is C homologous to a formal sum of algebraic cycles?

One obvious condition: Since an algebraic cycle is complex, it has even (real) dimension.


A typical issue in geometry: Find a geometric representative of a topological equivalence class of "cycles"

Hodge's proposed characterization of sums of algebraic cycles brings in our final theme:

• Interplay between geometry and calculus

https://www.google.ca/imgres?imgurl=https://www.ma.utexas.edu/users/dafr/HodgeConjecture/jpg/ Slide21.jpg&imgrefurl=https://www.ma.utexas.edu/users/dafr/HodgeConjecture/netscape_noframes. html&h=540&w=720&tbnid=2pnWLyrDdf1SiM:&tbnh=158&tbnw=211&usg=__i1tKth78PLTH6hzf2-WHWlw0qH0=&vet=10ahUKEwiwn6iKjI_XAhWF64MKHQ-BAaYQ9QEILDAA..i&docid=gVJyErfNOdd8WM&sa =X&ved=0ahUKEwiwn6iKjI_XAhWF64MKHQ-BAaYQ9QEILDAA#h=540&imgdii=2pnWLyrDdf1SiM:&tbnh=15 8&tbnw=211&vet=10ahUKEwiwn6iKjI_XAhWF64MKHQ-BAaYQ9QEILDAA..i&w=720

Hodges Conjecture Clay Institute Millennium Problem Solution

Ibid.

Consider:

Consider.	
\mathbb{CP}^n —»Projected Manifold X	Eq.(1)
X=Polynomial \mathbb{P}^n	Eq.(2)
C=Analytic function =transcendental (sin , Ln, e)	Eq.(3)
Let X be the variable in the Golden Mean Polynomial	
x ² -x=0	Eq.(4)
x(x-1)=0	Eq.(5)
x=0 Trivial	
x=1singular	
X=2 y=4	Eq.(6)
X=3 y=6	
X=4 y=12	
X=5 y=20	
X=6 y=30	
X=-1 y=2	
X=-2 y=6	
Etc.	
Therefore, roots are always even.	

Hodges Conjecture Clay Institute Millennium Problem Solution	
Let ∑C=C	Eq.(7)
Therefore, the function equals the derivative.	
$\int C = C^2/2 = C$	Eq (8)
C ² =2C	
C=2	
$C\mathbb{P}^{n}=2\mathbb{P}^{n}=X$	Eq. (9)
$2\mathbb{P}^n=x^2-x-0$	Eq.(10)
$2\mathbb{P}^n=1$	
$\mathbb{P}^{n}=1/2$	
$\mathbb{P}=^{n}\sqrt{(1/2)=1/n}\sqrt{2}$	Eq.(11)
Let C'=2/3 * $2^{3/2}$ =0.4242~ π -e	Eq.(12)
$C=\int(\pi-e^x) dx = x - e^x$	Eq.(13)
$C\mathbb{P}^{n}=(x-e^{x})(1/\sqrt{2})=x^{2}-x$	Eq.(14)
So, the solution is:	
$x^{2}-x-(x-e^{x})(1/\sqrt{2})=0$	Eq. (15)
When n=1, the last term becomes sin 45° = cos 45°	
And the natural logarithm function:	
when x=1, y=0	
&	
y'=y=1	Eq.(16)
This is the ln function.	
$\sin u + v + x^2 + y^2 = z^2$	Eq.(17)
For $x^2 + y^2 = z^2 = Radius = 1$	Eq.(18)
When x=1, y=0	
$\sin u + v + \sin x^2 + \sin Y^2 = \sin (1)$	Eq.(19)
$0.8415 + (-0.8415) + (\sin^2 1) + (\sin^2 0) = 0.8415$	Eq.(20)
$\sin^2 0 = 0$	
sin ² 1=0.8415	
0.8415-0.8415+0.0 +0.8415=0.8415	
0+0.8415 =0.8415	Eq.(21)
True!	

Hodges Conjecture Clay Institute Millennium Problem Solution

CONCLUSION

We have worked out a possible set of solutions to the Hodges Conjecture. We have considered Analytic functions, C, summed into the general polynomial, P. This allows us to mold geometry and calculus together.

Hodges Conjecture Clay Institute Millennium Problem Solution

References

- 1. Cusack, P., Astro-Theology, Cusack Universe. J. of Phys. Math. Jan 2016. OMI.
- 2. Chemistry for Astro-Theology, Fluid Mechanics, Open Access, 4:1.2017.
- 3. Convergence of Physical Mathematics, Fluid mechanics, Open Access, 4:163. 2017.
- 4. Convergence and the Grand Unified Theory, J. of Phys. Math. 8:211, 2017.
- 5. Gravity and Electromagnetism. Fluid mechanics, Open Access. 4:155. 2017
- 6. Gravity, Time, Mass and the Superforce. J. of Physical Mathematics. Jan (2018)
- 7. Naiver-Stokes Clay Institute Millennium Problem Solution. J. of Physical math. 7: 176. 2016.
- 8. Physics for Astro-theology. Fluid mechanics Open Access. 4: 146. 2016.
- 9. Riemann Hypothesis Clay Institute Millennium Problem Solution. J ApplComputat. Math 5:317
- 10. Ross 128 Radio Frequency Detection: An Astro-theology Explanation, (submitted)
- 11. The Ether, The Universal Material. Fluid Mech Open Acc 3: 132 2016.
- 12. The Fundamental Solution to Economics. Research and Reviews. J. of statistics and Math. Sciences. 2016.
- 13. The Speed of light and Astro-theology. Fluid Mech Open Acc 4: 148.
- 14. The Termination of Physical Constants in Proton Mass. Fluid Mech Open Acc 4:150
- 15. Time Travel for Nostradamus. Research and Reviews. J. of Statistics and math. Sciences. 2016
- 16. The Western Pacific Biotwang: experiment al Evidence for Astrotheology Cusack's Universe.
- 17. Uniting Cosmology with Quantum Mechanics. Asian journal of math. Sciences. 1:03, 2017.
- 18. Universal ODE's and Their Solution. J Phys Math 7: 191. 2016.
- 19. Universal Soil Mechanics. Asia J. of math. Sciences. 1:03 2017.
- 20. Universal Structural Mechanics (submitted).
- 21. Universal Simple Harmonic Impetus. (submitted).
- 22. What is the Value of the Sqrt (-1)? Research and Reviews. J. of Statisticsand Math. Sciences. 2016.
- 23. Yang-mills Mass Gap Clay Institute Millennium Problem Solution. J Phys Math 7:171. 2016.

Citation: Paul T E Cusack. "Hodges Conjecture Clay Institute Millennium Problem Solution". American Research Journal of Mathematics. vol 3, no. 1, 2017, pp. 1-4.

Copyright © 2017 Paul T E Cusack, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.