ISSN-2378-704X Volume 3, Issue 1, 2 Pages

Research Article Open Access

New Sufficient Conditions for Hamiltonian and Traceable Graphs

Rao Li

Dept. of mathematical sciences, University of South Carolina Aiken, Aiken, SC 29801 raol@usca.edu

Abstract: In this note, we present new sufficient conditions for Hamiltonian and traceable graphs.

Keywords: Hamiltonian graph, traceable graph

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [1]. For a graph G = (V, E), we use n and e to denote its order |V| and size |E|, respectively. The connectivity of the graph G is denoted by k(G). For disjoint subsets G, G of the vertex set G of a graph G, let G is the set of the edges in G that join a vertex in G and a vertex in G. We use $G \cap G$ to denote the join of two disjoint graphs G and G is called the vertices of G is called a Hamiltonian cycle of G if G contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path G is called a Hamiltonian path of G if G contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. In this note, we present new sufficient conditions for Hamiltonian and traceable graphs. The main results are as follows.

Theorem 1. Let G be a graph of order $n \ge 3$, e edges, and connectivity $k \ge 2$. If

$$e \ge (n - k - 1)(n + k)/2$$
,

then G is Hamiltonian or $K_k \vee E_{k+1}$, where n = 2k + 1.

Theorem 2. Let G be a graph of order $n \ge 2$, e edges, and connectivity $k \ge 1$. If

$$e \ge (n - k - 2)(n + k + 1)/2$$
,

then G is traceable or $K_k \vee E_{k+2}$, where n = 2k + 2.

Next, we will prove Theorem 1 and Theorem 2.

2 PROOFS

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. If G has a Hamiltonian cycle, then the proof is finished. Now we assume that G is not Hamiltonian. Choose a longest cycle C in G and give an orientation on C. Since G is not Hamiltonian, there exists a vertex x_0 in V(G) - V(C). By Menger's theorem, we can find s ($s \ge k$) pairwise disjoint (except for x_0) paths P_1 , P_2 , ..., P_s between x_0 and V(C). Let u_i be the end vertex of P_i on C, where $1 \le i \le s$. We, without loss of generality, assume that the appearance of u_1 , u_2 , ..., u_s on C agrees with the given orientation of C. We use u_i^+ to denote the successor of u_i^- along the given orientation of C, where $1 \le i \le s$. Then a standard proof in Hamiltonian graph theory yields that $S := \{x_{0_i}, u_1^+, u_2^+, ..., u_k^+\}$ is independent (otherwise G would have cycles which are longer than C). Thus

$$(n - k - 1)(n + k)/2 \le e = |E(S, V - S)| + |E(G[V - S])|$$

$$\le |S|(n - |S|) + (n - |S|)(n - |S| - 1)/2$$

$$= (n - |S|)(n + |S| - 1)/2 \le (n - k - 1)(n + k)/2.$$

Therefore |S| = k + 1, xy is in E for any vertex x in S and for any vertex y in V - S, and G[V - S] is complete.

www.arjonline.org Page 1

New Sufficient Conditions for Hamiltonian and Traceable Graphs

Let H be the component of G[V - V(C)] containing x_0 . Since u_1^+ is adjacent to any vertex in V - S, H must consist of a singleton x_0 (otherwise G would have a cycle which is longer than C). Since x_0 is adjacent to any vertex in V - S, H must be the only component of G[V - V(C)] (otherwise x_0 would be adjacent to a vertex in another component of G[V - V(C)], which is a contradiction). Again, since x_0 is adjacent to any vertex in V - S, the segment from u_i^+ to u_{i+1} along the given orientation of C, for each i with $1 \le i \le s$ and s+1 is regarded as 1, must consist of only u_i^+ and u_{i+1} (otherwise G would have a cycle which is longer than C). Hence G is

$$K_{\nu} \vee E_{\nu+1}$$
, where $n = 2k + 1$.

This completes the proof of Theorem 1.

OED

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2. If G has a Hamiltonian path, then the proof is finished. Now we assume that G is not traceable. Choose a longest path P in G and give an orientation on P. Let y and z be the two end vertices of P. We assume that the appearance of y and z on P agrees with the given orientation of P. Since G is not traceable, there exists a vertex x_0 in V(G) - V(P). By Menger's theorem, we can find s $(s \ge k)$ pairwise disjoint (except for x_0) paths P_1 , P_2 , ..., P_s between x_0 and V(P). Let u_i be the end vertex of P_i on P, where $1 \le i \le s$. We, without loss of generality, assume that the appearance of u_1 , u_2 , ..., u_s on P agrees with the given orientation of P. Since P is a longest path in G, $y \ne u_i$ and $z \ne u_i$, for each i with $1 \le i \le s$, otherwise G would have paths which are longer than P. We use u_i^* to denote the successor of u_i along the given orientation of P, where $1 \le i \le s$. Then a standard proof in Hamiltonian graph theory yields that $S := \{x_0, y, u_1^+, u_2^+, ..., u_k^+\}$ is independent (otherwise G would have paths which are longer than P). Thus

$$\begin{split} &(n-k-2)(n+k+1)/2 \le e = |E(S,V-S)| + |E(G[V-S])| \\ &\le |S|(n-|S|) + (n-|S|)(n-|S|-1)/2 \\ &= (n-|S|)(n+|S|-1)/2 \le (n-k-2)(n+k+1)/2. \end{split}$$

Therefore |S| = k + 2, xy in E for any vertex x in S and for any vertex y in V - S, and G[V - S] is complete.

Let H be the component of G[V - V(P)] containing x_0 . Since u_1^+ is adjacent to any vertex in V - S, H must consist of a singleton x_0 (otherwise G would have a path which is longer than P). Since x_0 is adjacent to any vertex in V - S, H must be the only component of G[V - V(P)](otherwise x_0 would be adjacent to a vertex in another component of G[V - V(P)], which is a contradiction). Again, since x_0 is adjacent to any vertex in V - S, the segment from u_i^+ to u_{i+1} along the given orientation of P, for each i with $1 \le i \le s-1$, must consist of only u_i^+ and u_{i+1} (otherwise G would have a path which is longer than P). Moreover, the segment from y to u_1 along the given orientation of P must consist of only y and u_1 and the segment from u_s^+ to z along the given orientation of P must consist of only u_i^- . Hence G is

$$K_k \vee E_{k+2}$$
, where $n = 2k + 2$.

This completes the proof of Theorem 2.

QED

REFERENCES

1. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).

Citation: Rao Li, "New Sufficient Conditions for Hamiltonian and Traceable Graphs". American Research Journal of Mathematics; V3, I1; pp:1-2.

Copyright © 2017 Rao Li, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.