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1 Introduction
We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not 
defined here follow those in [1]. For a graph G = (V, E), we use n and e to denote its order |V| and size |E|, 
respectively. The connectivity of the graph G is denoted by k(G). For disjoint subsets S, T of the vertex set V(G) 
of a graph G, let E(S, T) be the set of the edges in G that join a vertex in S and a vertex in T. We use G˅H to denote 
the join of two disjoint graphs G and H. The graph consists of p isolated vertices is denoted by Ep. A cycle C in a 
graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G 
has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. 
A graph G is called traceable if G has a Hamiltonian path. In this note, we present new sufficient conditions for 
Hamiltonian and traceable graphs. The main results are as follows.

Theorem 1. Let G be a graph of order n ≥ 3, e edges, and connectivity k ≥ 2. If 

e≥ (n - k - 1)(n + k)/2,

then G is Hamiltonian or Kk˅Ek+ 1, where n = 2k + 1.

Theorem 2. Let G be a graph of order n ≥ 2, e edges, and connectivity k ≥ 1. If 

e≥ (n - k - 2)(n + k + 1)/2,

then G is traceable or Kk˅Ek+ 2, where n = 2k + 2.

Next, we will prove Theorem 1 and Theorem 2.

2 Proofs
Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. If G has a Hamiltonian cycle, 
then the proof is finished. Now we assume that G is not Hamiltonian. Choose a longest cycle C in G and give an 
orientation on C. Since G is not Hamiltonian, there exists a vertex x0in V(G) - V(C). By Menger’s theorem, we 
can find s (s ≥ k) pairwise disjoint (except for x0) paths P1, P2, ...,Ps between x0 and V(C). Let ui be the end vertex 
of Pi on C, where 1 ≤ i ≤ s. We, without loss of generality, assume that the appearance of u1, u2, ...,us on C agrees 
with the given orientation of C. We use ui

+ to denote the successor of ui along the given orientation of C, where 
1 ≤ i ≤ s. Then a standard proof in Hamiltonian graph theory yields that S :={x0, u1

+, u2
+, ..., uk

+} is independent 
(otherwise G would have cycles which are longer than C). Thus 

(n - k - 1)(n + k)/2 ≤ e = |E(S, V - S)| + |E(G[V - S])|

≤ |S|(n - |S|) + (n - |S|)(n - |S| - 1)/2
= (n - |S|)(n + |S| - 1)/2≤ (n - k - 1)(n + k)/2.

Therefore |S| = k + 1, xy is in E for any vertex x in S and for any vertex y in V - S, and G[V - S)] is complete. 
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Let H be the component of G[V - V(C)] containing x0. Since u1
+ is adjacent to any vertex in V - S, H must consist of 

a singleton x0 (otherwise G would have a cycle which is longer than C). Since x0 is adjacent to any vertex in V - S, 
H must be the only component of G[V - V(C)] (otherwise x0 would be adjacent to a vertex in another component 
of G[V - V(C)], which is a contradiction). Again, since x0 is adjacent to any vertex in V - S, the segment from ui

+ to 
ui + 1 along the given orientation of C, for each i with 1 ≤ i ≤ s and s + 1 is regarded as 1, must consist of only ui 

+ 
and ui + 1 (otherwise G would have a cycle which is longer than C). Hence G is 

Kk˅Ek + 1, where n = 2k + 1. 

This completes the proof of Theorem 1.     QED

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2. If G has a Hamiltonian path, 
then the proof is finished. Now we assume that G is not traceable. Choose a longest path P in G and give an 
orientation on P. Let y and z be the two end vertices of P. We assume that the appearance of y and z on P agrees 
with the given orientation of P. Since G is not traceable, there exists a vertex x0in V(G) - V(P). By Menger’s 
theorem, we can find s (s ≥ k) pairwise disjoint (except for x0) paths P1, P2, ...,Ps between x0 and V(P). Let ui be 
the end vertex of Pi on P, where 1 ≤ i ≤ s. We, without loss of generality, assume that the appearance of u1, u2, ...,us 
on P agrees with the given orientation of P. Since P is a longest path in G, y ≠ui and z ≠ ui, for each i with 1 ≤ i ≤ s, 
otherwise G would have paths which are longer than P. We use ui

+ to denote the successor of ui along the given 
orientation of P, where 1 ≤ i ≤ s. Then a standard proof in Hamiltonian graph theory yields that S :={x0, y, u1

+, u2
+, 

..., uk
+} is independent (otherwise G would have paths which are longer than P). Thus 

(n - k - 2)(n + k + 1)/2 ≤ e = |E(S, V - S)| + |E(G[V - S])|

≤ |S|(n - |S|) + (n - |S|)(n - |S| - 1)/2

= (n - |S|)(n + |S| - 1)/2≤ (n - k - 2)(n + k + 1)/2.

Therefore |S| = k + 2, xy in E for any vertex x in S and for any vertex y in V - S, and G[V - S)] is complete. 

Let H be the component of G[V - V(P)] containing x0. Since u1
+ is adjacent to any vertex in V - S, H must consist of 

a singleton x0 (otherwise G would have a path which is longer than P). Since x0 is adjacent to any vertex in V - S, 
H must be the only component of G[V - V(P)](otherwise x0 would be adjacent to a vertex in another component 
of G[V - V(P)], which is a contradiction). Again, since x0 is adjacent to any vertex in V - S, the segment from ui

+ 
to ui + 1 along the given orientation of P, for each i with 1 ≤ i ≤ s–1, must consist of only ui

+ and ui + 1 (otherwise G 
would have a path which is longer than P). Moreover, the segment from y to u1 along the given orientation of P 
must consist of only y and u1 and the segment from us

+ to z along the given orientation of P must consist of only 
us

+. Hence G is 

Kk˅Ek + 2, where n = 2k + 2. 

This completes the proof of Theorem 2.                                                                      QED 
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