
Introduction
The study of laminar flow and heat transfer of a viscous fluid over a stretching sheet is an essential research 
field in fluid mechanics, due to its extensive applications in many manufacturing processes in industry, such as 
glass-fiber production, extraction of polymer sheet, hot rolling, wire drawing, solidification of liquid crystals, 
paper production, drawing of plastic films, petroleum production, exotic lubricants and suspension solutions, 
continuous cooling and fibers spinning. A lot of work on the boundary layer Newtonian fluids has been carried 
out both experimentally and theoretically. Crane [1] was the first who investigate the stretching problem taking 
into account the fluid flow over a linearly stretched surface. On the other hand, Gupta [2] stressed that realistically, 
stretching surface is not necessarily continuous. Magyari and Keller [3] analyzed the steady boundary layers 
on an exponentially stretching continuous surface with an exponential temperature distribution. Elbashbeshy 
[4] investigated the Heat transfer over an exponentially stretching continuous surface with suction. Partha 
[5] discussed the effect of viscous dissipation on the mixed convection heat transfer from an exponentially 
stretching surface. Al-Odat et al. [6] studied the effects of magnetic field on fluid flow and heat transfer over an 
exponentially stretching surface. Sajid and Hayat [7] find the analytical solution of the thermal radiation effects 
on the flow over an exponentially stretching sheet by using the homotopy analysis method. Later, Bidin and 
Nazar [8] numerically studied the effect of thermal radiation on the steady laminar boundary layer flow and 
heat transfer over an exponentially stretching sheet. Bararnia et al. [9] analytically studied the boundary layer 
flow and heat transfer  on a continuously stretching surface. On the other hand, El-Aziz [10] analyzed the effect 
of viscous dissipation on mixed convection flow of micropolar fluid past an exponentially stretching sheet. 
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Ishak [11] discussed the combined effects of magnetic field and thermal radiation on boundary layer flow and 
heat transfer over an exponentially stretching sheet. 
All the above investigations [1–11] deal with the laminar boundary layer flow and heat transfer over a stretching 
surface for a Newtonian fluid. A vast majority of reactions, involved specifically in food processing, polymer 
processing, biochemical industries, etc., are also typical examples of non-Newtonian behavior. The studies 
of non-Newtonian fluids offer interesting challenges to mathematicians, engineers, physicists, and computer 
scientists. Because of the complexity of non-Newtonian fluids, there is not a single constitutive equation which 
exhibits all properties of such non-Newtonian fluids. In the process, a number of non-Newtonian fluid models 
have been proposed. Among these, the viscoelastic model [12–14], the power law model [15-17], second or 
third grade model [18-19], the Maxwell model [20-21]. There is another type of non-Newtonian fluid known 
as Casson fluid. Casson fluid exhibits yield stress. It is well known that a Casson fluid is a shear thinning liquid, 
which is assumed to have an infinite viscosity at zero rate of shear, a yield stress below which no flow occurs, 
and a zero viscosity at an infinite rate of shear, i.e., if a shear stress less than the yield stress is applied to the 
fluid, it behaves like a solid whereas, if a shear stress greater than yield stress is applied, it starts to move. The 
examples of Casson fluids are as follows: jelly, human blood, honey, soup, tomato sauce, concentrated fruit 
juices, etc. The laminar boundary layer flow of a Casson fluid over a stretching surface attracts the attention 
of modern-day researchers. Casson fluid can be defined as a shear thinning liquid which is assumed to have 
an infinite viscosity at zero rate of shear, a yield stress below which no flow occurs, and a zero viscosity at 
an infinite rate of shear (Dash et al. [22]). Eldabe and Salwa [23] have analyzed the Casson fluid for the flow 
between two rotating cylinders. Mukhopadhyay et al. [24] analyzed the numerical solutions for the boundary 
layer flow and heat transfer for a Casson fluid over an unsteady stretching surface. Pramanik [25] studied the 
Steady boundary layer flow of a Casson fluid and heat transfer over an exponentially stretching surface in the 
presence of thermal radiation.

All the above investigations assume the conventional no slip boundary conditions over a stretching surface. 
Undoubtedly, for many decades, scientists have conducted extensive research trying to understand and control 
the slip flow behaviors over a stretching surface. Partial velocity slip readily occurs for an array of complex fluid 
such as emulsions, suspensions, foams and polymer solutions. Also, the fluids that exhibit boundary slip have 
important technological applications, such as in the polishing of artificial heart valves and internal cavities. In 
light of these various applications many authors have investigated and reported the results on the boundary 
layer flow and heat transfer characteristics in the presence of slip effects. Several researchers like Ariel et al. 
[26], Hayat et al. [27], Mukhopadhyay [28] and Turkyilmazoglu [29], etc. investigated the flow problems taking 
slip flow condition at the boundary. Later, Mukhopadhyay [30] investigated the velocity slip and thermal slip 
effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing in presence 
of thermal radiation. Recently, Remus-Daniel Ene and Vasile Marinka [31] analyzed the same problem by using 
optimal homotopy asymptotic method.

The aim of the present work is to investigate the numerical solution of the steady boundary layer flow for a 
MHD Casson fluid over a an exponentially stretching sheet with thermal radiation, suction/blowing, viscous 
dissipation, and heat source/sink involving boundary conditions of  velocity slip and thermal slip effects . The 
governing partial differential equations are first transformed into ordinary differential equations, before being 
solved numerically using the Keller-box method for some values of the governing parameters.

Mathematical Formulation
Consider a steady two-dimensional laminar flow of an incompressible viscous and electrically conducting fluid 
past a exponentially stretching sheet which coincides with the plane y = 0. 
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Fig1. Sketch of the physical flow problem
The fluid flow is confined to y > 0. The x-axis is taken along the continuous stretching surface in the direction 
of motion while the y-axis is perpendicular to the surface. Two equal and opposite forces are applied along the 
x-axis so that the wall is stretched keeping the origin fixed. The flow is assumed to be generated by stretching 
of the elastic boundary sheet from a slit with a large force such that the velocity of the boundary sheet is an 
exponential order of the flow directional coordinate x. Along with this we considered heat source and chemical 
reaction to the flow. The rheological equation of state for an isotropic and incompressible flow of a Casson fluid 
is as follows:

Here   and  is the th component of the deformation rate, is the product of the component 
of deformation rate with itself,  is a critical value of this product based on the non-Newtonian model,  is 
plastic dynamic viscosity of the non- Newtonian fluid, and  is the yield stress of the fluid. The flow takes place 
in the Upper half plane . A variable magnetic field  is applied normal to the sheet,  being 
a constant. The continuity, momentum and energy equations governing such type of flow are written as                                                            

                                                                                                                                    (1)

                                                                                             (2)

                            (3)
              
Where u and v are the velocities in the x- and y directions, respectively,  is the kinematic viscosity,  is 
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the fluid density (assumed constant),  is the coefficient of fluid viscosity,   is parameter of the 
Casson fluid,   is the electrical conductivity,  is the thermal conductivity,  is the radiative heat flux,  is the 
specific heat at constant pressure,  is the is the dimensional heat generation ( ) or absorption 

( ) coefficient,  is a constant.

In writing Eq. (2), we have neglected the induced magnetic field since the magnetic Reynolds number for the 
flow is assumed to be very small.

Using Rosseland approximation for radiation we can write

     

                                                                                                                                                               (4)                  

where  is the Stefan–Boltzman constant,  is the absorption coefficient. Assuming that  is a linear 
function of temperature, then

 -3                    (5)
Using Eq. (4) and (5), Eq. (3) reduces to:

                     (6)
Boundary Conditions
The appropriate boundary conditions for the problem are given by

 ,     , ,              at                             (7)

,          ,          as                                                                                                                                        (8)

where  is the stretching velocity,  is the reference velocity,  is the temperature at the 
sheet,  is the reference temperature,   is the velocity slip factor which changes with x,  is the 
initial value of velocity slip factor and  is the thermal slip factor which also changes with x,  is the 
initial value of thermal slip factor. The no-slip case is recovered for  .  is the velocity of suction 
and  is the velocity of blowing,  , a special type of velocity at the wall is considered,  is 
the initial strength of suction.
Method of Solution
Introducing the similarity variables as

 ,     ,      

 ,    .            (9)                                                                

Where  is the similarity variable,  is the dimensionless stream function,   is the dimensionless 
temperature and primes denote differentiation with respect to . The transformed ordinary differential 
equations are:
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                                                                                                                                                                                                            (10)

                                                                  (11)

and the boundary conditions take the following form:

, ,      ,                                                          (12) 

                                                             (13)

 where the prime denotes differentiation with respect to ,   is the magnetic parameter,   is 
the velocity slip parameter,  is the suction (or blowing) parameter and   is the 
thermal slip parameter,  is the radiation parameter,  is the Prandtl number,   is the 
Eckert number,    is the heat source/sink parameter. The important physical quantities of this problem 
are the skin friction coefficient and the local Nusselt number , which represent the wall shear stress and 
the heat transfer rate at the surface , respectively.

The skin friction coefficient  is given by

 

 ,                                                                                                                                 (14)

and the local Nusselt number  is given by

 
   .                                                                                                     (15)     

Here  is a local Reynold number.                                                                                                 
Numerical Procedure
The system of ordinary differential Eqs. (10) and (11) along with boundary conditions (12), (13) has been solved 
numerically using the Keller box method described in the book by Cebeci and Bradshaw [32]. The solution is 
obtained in the following four steps:

Reduce Eqs. (10) and (11) to a first-order system, ●

Write the difference equations using central differences, ●

Linearize the resulting algebraic equations by Newton’s method, and write them in the matrix-vector  ●
form,

Solve the linear system by the block triadiagonal elimination technique. ●

Results and Discussion
In order to analyze the theoretical concept of the physical model, numerical computations are carried out for 
several sets of values of the physical parameters, namely magnetic parameter , Casson parameter 
, velocity slip parameter , suction (/injection) parameter , radiation parameter , thermal slip 
parameter . Prandtl number , Eckert number , heat source/sink parameter .

American Research Journal of Mathematics(ARJM) 

Volume 2016                                                                                                                                                                           Page 5



Comparison of the existing results with some available results of Magyari and Keller [3], Bidin and Nazar [8], 
Ishak [11] and Mukhopadhyay [30] (for some special cases) in absence of Casson fluid, magnetic field, thermal 
radiation, viscous dissipation, heat source/sink, velocity slip, thermal slip and suction/blowing at the boundary, 
as presented in Table 1. The results are found in excellent agreement.

Let us now pay attention to the effects of Casson parameter  on velocity, and temperature profiles. Fig. 2a 
shows the velocity profile against the similarity variable  for various values of Casson parameter . We observe 
from this figure that the boundary layer thickness increases as β decreases. Likewise, this figure depicts that for 
increasing values of the Casson parameter, it reduces the fluid velocity distribution inside the boundary layer 
away from the sheet but the reverse is true along the sheet. Physically, with an increase in the non-Newtonian 
Casson parameter, the fluid yield stress is decreasing causes a production for resistance force which make the 
fluid velocity decreases. The temperature profile for variable values of the Casson parameter for the exponential 
stretching sheet is presented in Fig. 2b. This figure reveals that an increase in the temperature distribution along 
the thermal boundary layer is observed with a large enhancement in the Casson fluid parameter. Likewise, the 
thermal boundary layer thickness increases with increasing the Casson parameter. 

Table1. Values of [ ] for several values of Prandtl number Pr and radiation R in the absence of Casson 
fluid with , , , ,  and .

Pr R Magyari and Keller 
[3]

Badin and Nazar 
[8] Ishak [11] Mukhopadhyay [30] Present 

study
1 0 0.9548 0.9547 0.9548 0.9547 0.9548
2 1.4714 1.4715 1.4714 1.4715
3 1.8691 1.8691 1.8691 1.8691 1.8691
5 2.5001 2.5001 2.5001 2.5001
10 3.6604 3.6604 3.6603 3.6605
1 0.5 0.6765 0.6775

1 0.5315 0.5312 0.5311 0.5353

2 0.5 1.0735 1.0734 1.0735

1 0.8627 0.8626 0.8629
3 0.5 1.3807 1.3807 1.3807

1 1.1214 1.1213 1.1214

The dimensionless velocity profiles for selected values of magnetic parameter  are plotted in Fig. 3a. It 
is apparent that the velocity decreases along the surface with an increase in the magnetic parameter. The 
transverse magnetic field opposes the motion of the fluid and the rate of transport is considerably reduced. 
This is because with the increase in M, Lorentz force increases and it produces more resistance to the flow. Also, 
it is found that the temperature distribution along the boundary layer, thermal boundary thickness and the 
temperature for the surface of the sheet increases with an increase in the same parameter, as we can see from 
Fig. 3b. So the temperature inside the thermal boundary layer increases due to excess of heating. Therefore the 
magnetic field can be used to control the flow characteristics.

Fig. 4a depicts the effects of the velocity slip parameter  on the velocity profiles. Velocity distribution along 
the boundary layer is found to decrease with increasing . Physically, when slip occurs, the slipping fluid shows 
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a decrease in the surface skin-friction between the fluid and the stretching sheet because not all the pulling 
force of the stretching sheet can be transmitted to the fluid. So, increasing the value of  will decrease the flow 
velocity in the region of the boundary layer. Also, it is found that the temperature distribution increases with an 
increase in the same parameter , as we can see from Fig. 4b.

The effects of the suction/blowing parameter  on the velocity profile and the temperature distribution has 
been analyzed and the results are presented in Figs. 5a, and 5b. These figures show that the suction/blowing 
has a profound effect on the boundary layer thickness in which the suction reduces the thermal boundary layer 
thickness whereas blowing thickens it. However, the net effect for the suction parameter is to slow down the 
flow velocity, temperature distribution but the reverse is true for the blowing parameter. So, we can conclude 
that the suction can be effectively used for the fast cooling of the sheet.

The effect of the thermal slip parameter  on heat transfer may be analyzed from Fig. 6. From this figure it 
is anticipated that the increase of thermal slip parameter  results in the decrease in both the temperature 
distribution and the thermal boundary layer thickness; also, the maximum effect is observed at the surface of 
the stretching sheet. 

Fig. 7 is obtained by plotting the temperature distributions against the variable  for different values of the 
thermal radiation parameter. Form this graph, it is clear that the surface temperature , the thermal 
boundary layer thickness and the temperature distribution increases with an increase in the value of the 
thermal radiation parameter. This is because the divergence of the radiative heat flux   increases as the 
Rosseland radiative absorptivity  decreases (see expression for ) which, in turn, shows an increase in the 
rate of radiative heat transfer to the fluid, which causes the fluid temperature to increase. In view of this fact, 
the effect of radiation becomes more significant as  and the radiation effect can be neglected when 

.

Fig. 8 shows that increasing the Prandtl number  monotonically decreases both the surface temperature 
 and the temperature distribution along the boundary layer. This is due to the fact that an increase in 

the Prandtl number decreases the thermal boundary layer thickness because the higher values of the Prandtl 
number correspond to the weaker thermal diffusivity and thinner boundary layer.

The effect of the Eckert number  on heat transfer is shown in Fig. 9. It is clear that the temperature in 
the boundary layer region, the thermal boundary layer thickness increases with an increase in the viscous 
dissipation parameter.

Fig. 10 shows the influence of the heat source/sink parameter  on the temperature profile within the thermal 
boundary layer. From the Figure.9 it is observed that the temperature increases with an increase in the heat 
source/sink parameter.

Fig. 11a exhibits the nature of  related to skin-friction coefficient with Casson parameter  for three values 
of suction/ blowing parameter . It is found that  increases with  and that it is higher for suction 
than that of blowing. From this figure, it is very clear that shear stress at the wall is negative here. Physically, 
negative sign of    implies that surface exerts a dragging force on the fluid and positive sign implies the 
opposite. Fig. 11b displays the nature of heat transfer coefficient  against the Casson parameter . 
The increase in Casson parameter  leads to increase the heat transfer coefficient. Wall temperature gradient 

 increases with blowing but decreases with suction.
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Fig2a. Velocity profiles for different values of Casson parameter .

Fig2b. Temperature profiles for different values of Casson parameter .

Fig3a. Velocity profiles for different values of magnetic parameter .
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Fig3b. Temperature profiles for different values of magnetic parameter .

    

Fig4a. Velocity profiles for different values of velocity slip parameter .

Fig4b. Temperature profiles for different values of velocity slip parameter .
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Fig5a. Velocity profiles for different values of suction/blowing parameter .

Fig5b. Temperature profiles for different values of suction/blowing parameter .

Fig6. Temperature profiles for different values of thermal slip parameter .
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Fig7. Temperature profiles for different values of thermal radiation parameter .

Fig8. Temperature profiles for different values of thermal Prandtl number .

Fig9. Temperature profiles for different values of viscous dissipation parameter .
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Fig10. Temperature profiles for different values of heat source/sink parameter 

Fig11a. Skin-friction coefficient  against Casson parameter  for three values of suction/blowing parameter 
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Fig11b. Wall temperature gradient  against Casson parameter  for three values of suction/blowing 
parameter .
Conclusions
The MHD boundary layer flow and heat transfer of a Casson fluid over an exponentially stretching sheet with 
slip effects, thermal radiation, magnetic field, viscous dissipation and heat source/sink is analyzed here. The 
main findings of the present study can be summarized as follows:

Momentum boundary layer thickness decreases with increasing Casson parameter but the thermal  ●
boundary layer thickness increases in this case.

Magnetic parameter reduces the rate of transport but Surface shear stress increases as the magnetic  ●
parameter increases. Likewise, Wall temperature increases with increasing magnetic parameter.

The effect of increasing values of the suction parameter is to slow down the flow velocity and temperature  ●
distribution but the reverse is true for the blowing parameter.

Due to increasing velocity slip, velocity decreases but temperature increases. With the increase in thermal  ●
slip parameter, temperature distribution decreases.

The surface temperature of a sheet increases with radiation parameter R. This phenomenon is ascribed to  ●
a higher effective thermal diffusivity.

With the increase in Prandtl number, temperature distribution decreases. ●

An increase in viscous dissipation parameter and heat source/sink parameter enhances the thermal  ●
boundary layer thickness and heat transfer rate respectively.
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