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Abstract: Theory of indeterminate analysis of second degree in India goes back to Brahmagupta (ca. 628 AD). 

This paper is intended to present the work in the areas of indeterminate analysis of second degree till seventeenth 

century. Examples of significance and comparative studies, apart from modern development in the field, have 

been included. Finally, matrix equivalent solution of Na ra yaṇa rule is evolved.  
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I. INTRODUCTION 

The problems of determining solutions of algebraic equations (second and higher degrees) of indeterminate nature 

are called Diophantus analysis, after the Greek mathematician Diophantus of Alexandria (3
rd

 century AD). 

A part of his work Arithmetica containing indeterminate equation of the type: 22 126 yx  , 22 130 yx  , was 

studied by Fermat in 1657.  Fermat is credited to have initiated the study in Europe. 

Euler in 1732 and Lagrange in 1767 gave new turn to the solutions of equations which was based on continued 

fraction.  

Incidentally, Euler referred to it as the Pell‟s equation (J. Pell, 1611-1685 AD), but it has no historical justification 

whatever. There is no contribution of Pell to this topic except to find the solution of 22 12 yx  by geometric 

means..  

Noticeable that the Cattle problem of Archimedes (3rd century BC) involving equation 22 14729494 yx  provides 

first example of what the so-called Pell‟s equation. 

The term vargaprakṛti or kṛtiprakṛti (square nature) has been introduced by ancient Indian mathematicians to 

designate an equation of the type 

,22 ycNx                                                                                                                                                              (1) 

Where 

N- a non-square number, is called multiplier (prakṛti, guṇa, guṇika etc.)  

c- a positive or negative integer, is termed as interpolator (kṣepaka, praṣepaka, praṣepa, kṣepa etc.). When c 

negative is also called śodhaka (subtractive). 

x & y - the lesser root (haraṣvamula, kaniṣṭhapada)or first root (ādyamula) and greater (jyeṣtha or vṛhata) root or 

second root respectively. 

Notice that the solution 22 1 yNx   is always possible while 22 1 yNx  may not have integer solution. 

After Brahmagupta (Brahmsphuṭasiddhānta, c. 628 AD), the further refinements, clarifications, extensions were 

made by subsequent mathematicians, namely Śripati (Siddhāntaśekhara, c. 1039), Acārya Jayadeva (fl. Before 1073, 

his work is quoted and explained with illustration in the Sundari, a commentary on the Laghu-Bhāskariya of 

Bhāskara I written in 1073 by Udayadayadivakara), Bhāskara II (Līlāvatī  and Bījagaṇita, ca 1150), Nārāyaṇa 

(Gaṇitakaumudī and Bijaga𝑛 ita, 1356) and others including several commentaries. 

The aim of scholars namely Brahmagupta and Śripati was to obtain solutions of equation  

22 1 yNx                                                                                                                                                              (2) 
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In positive integers.  

They, however, discovered the following 

Lemma 1.An integral solution of 

22 ykNx                                                                                                                                                               (3) 

can always be found if k equals .42,1  or  

Lemma2.From an integral solution of an auxiliary equation (3), where 42,1  ork ,  integral solution of 

equation (2) can always be deduced. 

Brahmagupta and others had no method other than the trial to solve equation (3) where 42,1  ork .  

BhāskaraII removes this deficiency (which is needed in harder cases where trial fails) by providing a method called 

cakravāla or cyclic method; cakravāla (circle) because of its iterative character.  “It proceeds in a circle, the same 

set of operations being applied again and again in a continuous round” and it reveals thereby a resemblance to the 

continued fraction process of Euler. 

Professor Clas-ol of Selenius writes: Since the cakravāla method, and the other Hindu methods for solving 

Jayadeva-Bhāskara equation 

,1 22 yNx   

did not occur in China at all, it must be regarded as purely Indian creation.  

Hankel‟s remark is significant in the sense that „the cakravāla method was the absolute climax of old Indian science, 

and so of all oriental mathematics‟.  

It is accepted fact that the cakravāla method -anticipated the European methods by more than a thousand years.  

Moreover, Diophantus and his contemporaries were interested in getting just one solution whereas principle of 

composition (Bhāvanā) of Brahmagupta gives infinite number of solutions. 

1.1. Principle of Composition (Bhāvanā) Due to Brahmagupta 

Let Nbe a positive integer. If two integral solutions of the equation 

       2

1

2 ycNx                                                                                                                                                         (4) 

       
2

2

2 ycNx                                                                                                                                                         (5) 

For example if  𝑝, 𝑞  and   𝑝 , 𝑞  , then  𝑝𝑞 ± 𝑝 𝑞, 𝑞𝑞 ± 𝑁𝑝𝑝   is also a solution of  

         2

21

2 yccNx                                                                                                                                                 (6) 

If we take  𝑝, 𝑞 = 𝑝 , 𝑞  = (𝑎, 𝑏) in this Lemma, then  2𝑎𝑏, 𝑏2 + 𝑁𝑎2  is a solution of 

       ,22 ycNx                       
                                                                                                                                 (7) 

Where .21 ccc    

Lemma3. If two solutions of equation are known ,1 22 yNx  , then any number of other solutions can be found 

using principle of composition. 

Lemma4. Dividing the integral solution of ,22 ycNx  by c the rational solution 








c

y

c

x
,  of ,1 22 yNx  is 

obtained. 

1.2. Samāsa-Bhāvanā/ Antra-Bhāvanā/ Tulya-Bhāvanā  

Bhāskara II(Bījagaṇita, v. 2-4): 

„Set down successively the lesser root (hrasva), greater root (jyestha) and interpolator (kṣepaka), and below them 

should be set down in order the same or an another (set of similar quantities). From them by the principle of 

composition (Bhāvanā) can be obtained numerous roots.  
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Therefore, the principle of composition will be explained here. (Find) the two cross products (vajrabhyasa) of the 

two lesser and the two greater roots; their sum is a lesser root. In that (equation) the interpolator will be the product 

of the two previous interpolators. Again the difference of the two cross-products in a lesser root. Subtract the 

product of the lesser roots multiplied by the prakṛti from the product of the two greater roots; (the difference) will be 

greater root. Here also the interpolator is the product of the two (previous) interpolators‟. 

These results may be conveniently expressed in a tabular form as follows: 

Samāsa-Bhāvanā(additive composition) 

Prakṛt Harasva Harasva Kṣepa 

N 
1a  

1b  
1c  

2a  
2b  2c  

1221 baba   2121 aNabb   
21cc  

Antra-Bhāvanā (subtractive composition) 

Prakrt Harasva Harasva Kṣepa 

N 
1a  

1b  
1c  

2a  
2b  

2c  

1221 baba   
2121 aNabb   21cc  

Tulya-Bhāvanā(composition of equals) 

Prakṛt Harasva Harasva Kṣepa 

N 
1a  

1b  
1c  

1a  
1b  

1c  

112 ba  2

1

2

1 Nab   2

1c  

II. VARIOUS METHODS AND EQUATIONS 

2.1. Another Method can be Explored 

Let   nnpq nn ,...,2,1,0,,   be solutions of .122 Nxy  

The equation can be rewritten as    .10000  NpqNpq  

Also    .11111   nnnn pNqpNq  

Multiplying 

    .1
2

1010

2

1010   nnnn pqqpNyNpqq  

This generates recurrence relation 

1010   nnn pNpqqq , .1010   nnn pqqpp  

Eliminating ,1nq .001 nnn pqqpp 
That is,  .

1
01

0

nnn pqp
y

q  
 

Eliminating ,1np .001 nnn pNpqqq 
That is  .

1
10

0

 nnn qqq
Np

p  

Substituting these in recurrence relation 

2102   nnn qqqq and ,2 102   nnn pqpp 2n  

Following Na ra yaṇa, nth convergent of 

n

n

q

p
N  for n sufficiently large. 
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Error estimation Proposition [18]:  

Let 𝑁 > 0 be a non-square integer such that 𝑁 = 𝐴1
2 + 𝑟, where 𝐴1 is the largest positive integer and  𝑟  the smallest 

integer. Then 

     ni
nd

nNd
A

ii

ii

i ,.....,3,2,1,
2 11

2

1

2

1 





   

are the successive convergents to the series 

  

 

 


n

i ii

ii

nd

nNd

m

r
AN

3 11

2

1

2

1

1 .
2

   

Where 𝑑𝑖−1and 𝑛𝑖−1stand for the sum of denominator and numerator up to (𝑖 − 1) terms respectively and m for a 

positive integer. 

Since .ii RAN  Therefore, .11 RAN   

2

1

1

2

11

11

2

1

22 ;,
1

2

1
.;2,

22
ANrrm

mA
rARAAK

A

K

A

R
ARAN 










 

.
22 212

2

33
AA

K

A

R
RAN 

 

  .
2

1
2

321

2

2

3

3

44
AAA

K

A

R
RAN 

 

Proceeding in this way 

   

.
1

2,
2

1
....2

1
2

1

1

1

1

2

2

1321

1

2

3

1




































i

i

i

i

i

i

i

i

ii

ii

A
O

i
A

K

AAAA

K

A

R
RAN  

2.2. Method of Finding Rational Roots of 
22 1 yNx 

 

Siddhāntaśekharaxiv.32 states the following rule: 

“Divide twice an optional number by the difference between the square of that optional number and the prakṛti. This 

(quotient) will be the lesser root (of a square nature) when unit id the additive. From that (follows) the greater root”. 

Rationale. Choose p a positive integer such that .2 qNp  Let 
.

2

q

p
x 

  

Now     .244
2222222 qpqpqpqNp    

.
2

1
2

2
22

2



















q

qp

q

p
Ny

  

This implies
.1

2 2


q

p
y 

 

Special case. For )2(1 orq  or 
q

p an integer, the above rule yields integral solution. 

The rational solution can also be given as ,,, 222 kbh
AbBh

BbAh
y

AbBh

k
x 







 where b,k and h are respectively 

the base, upright and hypotenuse of a right angled triangle; A,B being two numbers such that .22 NBA   This 

has been found in commentary on Pāṭigaṇita. The solution is unique and is the most general rational solution. The 

solutions given by Brahmagupta (c. 628 AD), Śripati (1039 AD), Bhāskara II (1150AD), Nārāyaṇa (1357AD), 

Jnānarāja (1503AD), Kamlākara, and also by Wallis and W. Browncker (c.1657AD) are all deductible from it.  
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Śripati(c. 1039AD) (Siddhāntaśekhara xiv, v.33) gives the following rule for rational solution:“Unity is the lesser 

root. Its square multiplied by the prakṛti is increased or decreased  by the prakṛti combined with an (optional) whose 

square-root will be greater root. From them will be obtained two roots by the principle of composition”. 

That is, if m be the rational number optionally chosen, .)(1 222 mNmN   By Tulya Bhāvana

    .)(2
22222

NmNmmN  Hence .,
2

2

2

2 Nm

Nm
y

Nm

m
x







 This method was rediscovered in Europe by 

Brouncker in 1657. 

Remark. This rule is not useful when .,103,97,67,61,41 etcN   

2.3. The Equation 
222 ycxMn   

Rule GK13 [8]. “Divide the multiplier (of a square nature) by any arbitrary square number, so that, no remainder is 

left (after division). Take the quotient as the multiplier of another square nature. The lesser root (of the reduced 

equation), divided by the square-root of the divisor, will be the lesser-root (of the original equation)”. 

Let a be the lesser root of the transformed equation .,22 nxzycMz  The lesser root of the given equation will 

be na / while the greater roots of the both will remain the same. 

2.4. The equation 
222 ycxM   

Rule GK14 [8]. “The interpolator, divided by an optional number, is set down at two places. The quotient is 

diminished (at one place and) increased (at the other) by that (optional number and then) halved. The former is 

divided by the square-root of the multiplier. These are the lesser and greater roots, in order”. 

Bhāskara II has given solution for positive ksepa only. Let k be an optional number including 1, then 

.
2

1
,

2

1

















 k

k

c
yk

k

c

M
x  

For rationale refer to [8] 

 

Another Method 

Rewrite as    Mnxynxy  for kṣepa positive and    Mnxynxy  for kṣepa negative. Let 

2121 ,. mmmmM  so that ., 21 mnxymnxy 
 

Solving .
2

,
2

1212 mm
y

n

mm
x





  For kṣepa negative 

.
2

,
2

1212 mm
y

n

mm
x





  

2.5. The Equation 
22 ycNx 
 

Rule GK15-16 [8]. “When the additive or subtractive is greater than unity, the (two) roots should be determined by 

one‟s own intelligence. Then by the principle of composition of the roots with the additive unity, an infinite number 

of roots (can be obtained). Persons having no intelligence, have no knowledge of mathematics. They should be told 

the whole of mathematics by one‟s own intelligence”. 

Let ),( ba be the solution of
22 ycNx  and ),( qp  be the solution of .1 22 yNx  Then by the principle of 

composition ),( Napbpaqbp  will be the solution of .22 ycNx   

2.6. Chakravāla Method of Bhāskara II[(Bījagaṇita)[2, pp. 162-163] 

 “Considering the lesser root, greater root and interpolator (of a square nature) as the dividend, addend and divisor 

(respectively of a pulveriser), the (indeterminate) multiplier of it should be so taken as will make the residue of the  

prakṛti diminished by the square of that multiplier or the latter minus the prakṛti (as the case may be) the least. That 

residue divided by the (original) interpolator is the interpolator (of a new square-nature); it should be reversed in 

sign in case of subtraction from the prakṛti. The quotient corresponding to that value of the multiplier is the (new) 
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lesser root; hence the greater root. The same process should be followed repeatedly putting aside (each time) the 

previous roots and the interpolator. This process is called cakravāla (or the cyclic method). By this method there 

will appear two integral roots corresponding to an equation with
 42,1  or as interpolator. In order to device 

integral roots corresponding to an equation with the additive unity from those of the equation with interpolator
 

42  or the principle of composition (should be applied)”. 

Lemma 5: If   

22 bkNa                                                                                                                                                               (8) 

Then for any positive integer m 

   222
)( NabmkNmbamN  , i.e. 

222








 











 

k

Nabm

k

Nm

k

bam
N                                                                                                                   (9) 

is obtained by composing   
222 )(1 mNmN   and (8) by Samāsa Bhāvanā. 

Now to find solution of 22 1 yNx   we proceed with (8) and obtain (9). Let 
1a

k

bam



,

1b
k

Nabm



, 

1

2

k
k

Nm


 . The value of m is obtained from pulveriser 
1kabam  and is chosen so that Nm 2

is numerically 

the least. 

Bha skara II gives the following two theorems: 

Theorem1. When 1a is an integer, 1b and 1k  are also integers, so we obtain from (II) 

2

11

2

1 bkNa                                                                                                                                                        (10) 

If 42,11  ork , then (10) is a suitable auxiliary equation. Otherwise, we repeat the above process with 

(10) as we did with (8) and obtain, say .
2

22

2

2 bkNa   

Theorem2. After a finite number of repetitions, we obtain a suitable equation ,22   lN        

where .42,1  orl  And by process of Bhāvanā such an equation easily leads to .1 22 yNx   

Illustrations (Bījagaṇita,v.76) 

i) .161 22 yx      Solution: (226153980, 1766319049) 

ii) .167 22 yx      Solution: (5967, 48842) 

Note that the problem (i) was one of the challenging problems proposed by French mathematician, Fermat, in 1657 

to Frenicle and other fellow mathematicians in Europe as challenge. None of them succeeded in solving the equation 

in integers. Euler solved it in 1732 with the help of continued fraction.  

The cakravāla method certainly involves fewer steps than the Euler method 

The cyclic method was reproduced by Na ra yaṇa Paṇdita (Ganitakaumud𝑖 ) 

i) .197 22 yx      Solution: (6377352, 62809633) 

ii) .1103 22 yx     Solution: (22419, 227528) 

Remark. Majumdar [11]. Changing the suffices 

n

nn
n

k

bma
a


1

, ,1

n

nn
n

k

Namb
b




n

n
k

Nm
k




2

1
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Letting 
nnnn pbqa  ,  

,
1

1

nn

nn

n

n

pmq

Nqmp

q

p








  

This implies     .1
1

1111



 
i

nnnnnnnn npqpqnppqNq  

Conjecture: 

Find the other solutions of ,97 22 yx   the three solutions known are ).172,65(),24,9(),4,1(  

Example1 (LV). .161 22 yx   

Table1. Simulation Result for Ex1 

Steps 
im  ix  ik  iy  

0  1 3 8 

1 7 5 -4 39 

2 Samāsa Bhāvanā  195 4 1523 

3 Antra Bhāvanā  3805 -1 29718 

4 Samāsa Bhāvanā  226153980 1 1766319049 

Example2 (CF). .161 22 yx   

Table2. Simulation Result for Ex2 

Steps 
ia  ik  ir  iy  ix  

0 7 1 0 7 1 

1 1* 12 7 8 1 

2 4 3 5 39 5 

3 3 4 7 125 16 

4 1 9 5 164 1 

5 2 5 4 453 58 

6 2 5 6 1070 137 

7 1 9 4 1523 195 

8 3 4 5 5639 722 

9 4 3 7 24079 3083 

10 1 12 5 29718 3805 

11 14* 1 7 440131 56353 

Example3 (GK). .197 22 yx   

Table3. Simulation Result for Ex3 

Steps 
im  ix  ik  iy  

0  1 3 10 

1 11 7 8 69 

2 13 20 9 197 

3 14 53 11 522 

4 8 86 -3 847 

5 10 569 -1 5604 

6 Samāsa Bhāvanā  6377352 1 62809633 

Example4 (CF). .197 22 yx   

Table4. Simulation Results for Ex4 
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Steps 
ia  ik  ir  iy  ix  

0 9 1 0 9 1 

1 1* 16 9 10 1 

2 5 3 7 59 6 

3 1 11 8 69 7 

4 1 8 3 128 13 

5 1 9 5 197 20 

6 1 9 4 325 33 

7 1 8 5 522 53 

8 1 11 3 847 86 

9 5 3 8 4757 483 

10 1 16 7 5604 569 

11 18* 1 9 105629 10725 

2.7. Continued Fraction and Convergents of N  

Let N be written as a rational number .
b

a Further, if

n

n

q

p

q

p

q

p
,....,,

2

2

1

1  be the successive convergents, then 

  ,....
1

2

111
......

11
,.....,,

10121

010

n

n

cc

n
q

p

aaaaaa
aaaaN 






 

where 

0

0

0 a
q

p
 , 

1

0

1

1 1

a
a

q

p
 , 

2

1

0

2

2

1

1

a
a

a
q

p




, …….., .

b

a

q

p

n

n   

...)3,2,1(1,00  naa n
is called the simple continued fraction. c is the number of elements in the recurring 

cycle. The cakravāla process can be explained with the help of regular continued fraction expansion of .N Once 

compared nh stands for interpolator, nq the lesser root and np the greater root. 

Let  

Let   .1, 000  aNaNa  Then 0a  is called integral part of irrational number .N The fractional part 

0aN  is such that ,10 0  aN i.e. .10
0

2

0 





aN

aN
,

0

2

0
0

aN

aN
aN




 i.e. ,

1

1

0

0

2

0
0







 a

aN

aN
aN

where .1
2

0

0
1 






aN

aN
  

Define  11

2

1

0

0

2

0

0
1 ,

1



 







 aa

h

aN

aN

aN  

 22

3

2

1

0
2 ,

1



 


 aa

h

rN  

And so on 

,....3,2,
1

11

2 





 na
h

rN

n

n

n

n
n


  

After a certain stage, the partial quotients recur indefinitely in the same order. We say that CF of N its periodic or 

cyclic. The number of partial quotients involved is termed as its range (c). 
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The above expression in compact form is written as  .......,
*

,2

*

,1,0 caaaaN  By property of symmetry, we find the 

expansion in the form  .2......,
*

0,1,2,2,1,0 aaaaaaN  That is the periodic part  *

0,1,2,1 2......, aaaa c
has the property 

of symmetry .1,.....,2,1,,2 0   ckaaaa kckc
 

Let nn ba , and nh be defined by the relations  

1

11













n

n
n

n

n
n

n

n

bN

h
a

h

bN
a

h

bN  

Such that 
1


 n

n

n
n a

h

bN
a  

nnnn bhab 1
And 2

11   nnn bNhh  

Notice that if   ,1
1

Mhn

n



then  nn pq , is a solution of 22 yMNx  for some n, where 

nn qp / is the nth 

convergent of .N  

2,21   nppap nnnn  

2,21   nqqaq nnnn  

11101

000

,1

1,

aqaap

qap




 

Solutions of equation are  tctc pq ,
when c is even and  tctc pq 2,2

when c is odd. Solutions of  

22 1 yNx  are  ctct pq )12(,)12( 
 when c is odd. No solution is possible when c is even. Notice that the 

convergents satisfy the relation 

  ,...2,1,1
1

11 


 npqqp
n

nnnn
 

Table-5 

2.8. Comparison of Regular (Continued) Vs Semi-Regular (Cakravāla) Algorithm 

Table5. 

Sr No 
Convergents for 97  Convergents for 61  

 CF 
ik  Cakravāla 

ik  CF 
ik  Cakravāla 

ik  

  1  1  1  1 

1 

1

9
 

16   

1

7
 

1   

2 

1

10  3 

1

10
 

3 

1

8  12 

1

8  3 

3 

6

59
 

11   

5

39  3 

5

39
 

-4 

4 

7

69
 

8 

7

69
 

8 

16

125  4   

5 

13

128
 

9   

1

164
 

9   
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6 

20

197
 

9 

20

197
 

9 

58

453
 

5   

7 

33

325  8   

135

1070  5   

8 

53

522  11 

33

325  11 

195

1523  9 

195

1523  4 

9 

86

847
 

3 

86

847
 

-3 

722

5639
 

4   

10 

483

4757
 

16   

3083

24079  3   

11 

569

5604  1 

569

5604  -1 

3807

29718  12 

3807

29718  -1 

No of steps 11  6  6  4  

*]14,1,4,3,1,2,2,1,3,4*,1:7[61

*]18,1,5,1,1,1,1,1,1,5*,1:9[97





 

2.9. Rule for Forming Triangle with Consecutive Sides 1,,1  xxx  

GK Rule 118 Ch. IV [11]: 

“Divide twice an optional number by „the square of the optional number less 3‟. Add 1 to thrice the square (of the 

quotient). Twice the square-root of the sum is the base. 1 added to and subtracted from (the base) are the flank 

sides”. 

That is if n is optional number then by equating altitude of two triangles formed from juxtaposition of two rectangles 

as shown in Figure-1. 

Base,   ,132
2

1
2  yx  i.e. indeterminate equation in x and y so generated is 

.3
4

3 22 yx                                                                                                                                                                (11) 

Upright (altitude), .
3

2
2 


n

n
y  

Flank (lateral) sides are .1x  

In (11) kṣepa (c) is considered negative. 

2.10. Method for Finding the Integral Solutions (Triangles) 

GK Rule 119-120 Ch. IV [11]: 

“3 being the length of the perpendicular and 4, the base of the first right-angled triangle, and infinite (pairs of) right-

angled triangles are produced in which sides increase by unity. (In these), the perpendicular from the vertex to the 

respective base is the sum of „thrice theprevious base added to the still previous perpendicular‟ and the base is twice 

the sum of „the previous perpendicular added to the previous base‟. Triangles on opposition (in such triangles) are 

right-angled and in all such triangles, 1 added to and subtracted from the base, are the flank sides”. 

Lemma 6. Let  nbx  be the bases,  na  and  nc  the flank sides and  npy   the perpendiculars from the 

vertices of such triangles to the respective bases. Given that for first right-angled triangle .4,3 11  ba The satisfying 

conditions (recurrence relations) are: 

 112   nnn bpb                                                                                                                                                      (12) 

213   nnn pbp                                                                                                                                                      (13) 

and 
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1

1





nn

nn

bc

ba  

(4,3) is a solution  of (11) and that (2,2) of  

.1
4

3 22 yx                                                                                                                                                               (14) 

Herein kṣepa (c) is positive and is 1. 

 

Fig1. Arithmetic triangle 

Applying Samāsa Bhāvanā in equations (11) & (14), 

 112 2 bpb   









 112

4

3
2 pbp  

is a solution of (11). 

In general, 

 112   nnn bpb  









  11

4

3
2 nnn pbp  

For rationale of recurrence relations (12), refer to Singh [10, p.56]. 

Eliminating 1nb and 1np  from above two 

1
2

1

4

3
 nnn ppb  

1
2

1
 nnn bbp  

Making use in (12) and (13) 

  2111 42   nnnnn bbbpb                                                                                                                            (15) 

2121 43   nnnnn pppbp                                                                                                                             (16) 

Starting with )0,2(),( 00 pb and ),3,4(),( 11 pb we find ).12,14(),( 22 pb First eight such integral triplets

 nnn abc ,,  are given in tabulated form 
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Table6. Simulation Result 

n 
np  nb  nc  na  

1 3 4 3 5 

2 12 14 13 15 

3 45 52 51 53 

4 168 194 193 195 

5 627 724 723 725 

6 2340 2702 2701 2703 

7 8733 10084 10083 10085 

8 32592 37624 37613 37615 

Example4 GK 90. If you have pride in geometry, tell the triangles in which sides increase by unity, in many ways. 

Theorem3  (Generalization). If  dxxdx  ,, are the integral triplets, then 

  ,2
2

2

2

2
yd

x
dx 








 i.e. ,3

4

3 22 YX                                                                                                            (17) 

where .,
d

y
Y

d

x
X   

Thus  nn pbd , is a solution of resulting equation (17). 

2.11. Brahmagupta Triangles  

Beauregard-Suryanarayan [13] makes use of the formula for area of the triangle ,))()(( csbsass 

where 2/)( cbas  semi-perimeter of triangle having sides a,b,c.  For triangle with integer sides 

,1,,1  ttt
2

3t
s  and 1

2
3

2

2











tt (see Figure-2).Assuming ,2Xt  we have  .13 22  X  
Further, area of 

triangle with altitude ,l ..2
2

1
XllX  This implies  13 22  Xl is an integer. So let .3Yl  The equation (11) 

reduces to   

.13 22 XY                                                                                                                                                              (18) 

The initial solutions are (0,1)and ).2,1( Thereby using Samāsa Bhāvanā, 

11 2   nnn pbp                                                                                                                                                       (19) 

11 23   nnn bpb                                                                                                                                                       (20) 

Eliminating 1np and 1nb  from above two 

123  nnn bbp  

12  nnn ppb  

 

Fig2. Arithmetic triangle                                                                                               
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Making use of these in (19) and (20) 

214   nnn ppp                                                                                                                                                      (21) 

214   nnn bbb                                                                                                                                                          (22) 

The solutions are  .2,3),( nn bpXY  Eight integral triangles given by Brahmagupta are 

as:(3,4,5),(13,14,15),(51,52,53),(193,194,195),(723,724,725), 

(2701,2702,2703),(10083,10084,10085),(37633,37634,37635). 

Hoppe (1879) and Aubry (1911) are reported to work on similar aspects [13]. 

Bhāskara I makes use of scalene triangle (13,14,15) with half of base 14/2=7. The triangle was deformed into a 

rectangle with length 12 and breadth 7, that is, of area 84. Alternatively he transformed the triangle into two 

rectangles with sides 12,5 and 12,9 [7]. Heron of Alexandria (c. 75 AD) provided an illustration of a triangle with 

sides 13,14,15 and area 84 

2.12. Varga Prakrti with Negative Interpolator 

Marici Commentary on Jyotpatti v. 21-25 of Muniśvara (c. 1638AD) gives the relation 

    .cossin
222

 RRR          (23) 

Herein .cos,sin,,1 2  RyRxRkN   

Let        .cos,sin,,cos,sin, 2211  RRyxRRyx  Samāsa Bhāvanā is applied to get some sort of 

additive solutions  yx,  for sine and cosine functions of  ,..,

2

2

2

242



















R

y
R

R

x
eiyRx  

 

 



sinsincoscos

sincoscossin

2

2





Ry

Rx
 

On the similar line of Antra Bhāvanāthe corresponding solution to (23) are 

 

 



sinsincoscos

sincoscossin

2

2





Ry

Rx

 

Siddhāntasarva Bhāvanā II,v.58-59 v. 21-25 of Muniśvara also gives the derivation of the theorems. 

In modern equivalent if          cos,sin,,cos,sin, 2211  yxyx
 
are solutions of ,222 yRx  then 

so also    .cos,sin   yx  

Examples 

1 Bhāskara II .215 22 yx   Solutions by trial:    1,2,4,1  

2 Nārāyaṇa .6011 22 yx   Solutions by trial:    4,2,7,1  

2.13. N𝐚 r𝐚 yaṇa Matrix Equivalent Method for 
22 ycNx 

 

We make use of GK Rule 15-16. If ),( ba is a solution of
22 ycNx  and ),( qp of ,1 22 yNx   then by the 

principle of composition ),( Napbpaqbp  will be the solution of .22 ycNx   

Define [13] ,),( 









bNa

ab
baU det cU   and ,),( 










qNp

pq
qpV det .1V  

 NapbqaqbpW
NapbqaqbpN

aqbpNapbq

qNp

pq

bNa

ab
qpVbaU 





























 ,

)(
),(),(  
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   .detdet.det1.

)()(det

2222

22222222222

UVVUcNpqNab

pNbqNaqbpaNaqbpNNapbqW




 

Let .,,, 1100   nn yqxpybxa  The rest of the solutions ),( yx are governed by 

1010   nnn yxxyx , 1010   nnn xNxyyy  































1

1

00

00

n

n

n

n

y

x

yNx

xy

y

x
 

,11   nnn XUXX  say 

  .0det..,0det
00

00




















yNx

xy
eiIU  

This gives 
002001 , xNyxNy    

The corresponding eigen vectors are .
1

,
1

21 


















N
X

N
X nn

 

.,
0

0
21

2

11 cUPPD 







  




 































1

1

2

1

0

0

n

n

n

n

y

x

y

x




 

0212

0111

yxy

xxx

n

nn

n

nn











  

Using .
2

,
2

21
0

21
0

 



 y

N
x  

2.14. Application 

Here we cite an example from  Bījagaṇita of Bhāskara II [v. 159; 16, pp. 154-155]. 

For the arithmetic progression (AP) with first term 3 and common difference 2, find m and n such that ,3 nm SS 

where 
rS the sum of first r is terms of AP. 

From ,3 nm SS     .)1(26
2

3
)1(26

2
 n

n
m

m
 This implies 

,0)63(2 22  nnmm i.e. 

.1631 2  nnm  

Let .163 22 znn   Putting ,1 tn we find .23 22 zt                                                                               (23) 

By trial 22 121.3   and .211.3 22   

By additive composition .523.3 22   

By applying composition twice we get other two solutions. Thus )71,41(),19,11(),5,3(),( zt are the solutions of 

(23). Hence 40,10,2n and .70,18,4..,711,191,51 eim   
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