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Abstract:  This article deals with the main points of numerical solution of optimal control problems basing on the 
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I. INTRODUCTION 

The theory of optimal control has been well developed for over forty years. Control theory is application-oriented 

mathematics that deals with the basic principles underlying the analysis and design of (control) systems. Systems 

can be engineering systems (air conditioner, aircraft, and CD player etcetera), economic systems, biological systems 

and so on. To control means that one has to influence the behavior of the system in a desirable way: for example, in 

the case of an air conditioner, the aim is to control the temperature of a room and maintain it at a desired level, while 

in the case of an aircraft, we wish to control its altitude at each point of time so that it follows a desired trajectory. 

As a result, more and more people will benefit greatly by learning to solve the optimal control problems 
numerically. Realizing such growing needs, books on optimal control put more weight on numerical methods. In 

retrospect, [1] was the first and the “classic” book for studying the theory as well as many interesting cases (time-

optimal, fuel-optimal and linear quadratic regulator problems). Necessary conditions for various systems were 

derived and explicit solutions were given when possible. Later, [2] proved to be a concise yet excellent book with 

more engineering examples.  

II. PROBLEM STATEMENT 

The formulation of an optimal control problem requires several steps: the class of admissible controls is discussed in 

2.1; the mathematical description (or model) of the system to be controlled is considered in 2.2; then, the 

specification of a performance criterion is addressed in 2.3; Finally, we close the section with the statement of 
physical constraints that should be satisfied is described in 2.4. 

1.1.  Admissible Controls 

We shall consider the behaviour of a system whose state at any instant of time is characterized by 1n  real 

numbers 
nT

n
Rxxx  ),..,(

1
 (for example, these may be coordinates and velocities). The vector space of 

the system under consideration is called the phase space. It is assumed that the system can be controlled, i.e., the 

system is equipped with controllers whose position dictates its future evolution. These controllers are characterized 

by points
qT

q RUuuu  ),...,( 1
, 1q , namely the control variables. 

In the vast majority of optimal control problems, the values that can be assumed by the control variables are 

restricted to a certain control region U, which may be any set in 
qR . In applications, the case where U is a closed 

region in 
qR  is important. For example, the control region U may be a hypercube: 

,1
j
u qj ,...,1 .    (1) 
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The physical meaning of choosing a closed and bounded control region is clear. The quantity of fuel being supplied 

to a motor, temperature, current, voltage, etc., which cannot take on arbitrarily large values, may serve as control 

variables. More general relations, such as:  

  ,0u     (2) 

may also exist among the control variables. 

We shall call every function  u , defined on some time interval ],[
10
ttTt  , a control. A control is an 

element of a (normed) linear space of real-vector-valued functions.  

1.2.  Dynamical System 

A nontrivial part of any control problem is modelling the system. The objective is to obtain the simplest 

mathematical description that adequately predicts the response of the physical system to all admissible controls. We 

shall restrict our discussion herein to systems described by ordinary differential equations in state-space form: 

 ,,,...,,,...
11

tuuxxf
dt

dx
rni

i    
0

0
ii

xx  , ni ,...,1 .    (3) 

Here, Rt  stands for the independent variable, usually called time; in the case where f does not depend 

explicitely on t, the system is said to be autonomous. The vector 
qRUu   represents the control (or input or 

manipulated) variables at time instant t. The vector 
nRtx )( , 1n , represents the state (or phase) variables, 

which characterize the behavior of the system at any time instant t. A solution x(t, x0, u(.)) of (3) is called a response 

of the system, corresponding to the control  u , for the initial condition  
0

0
ii

xx  , ni ,...,1 . 

So one can think of a control system as a box, which given the input u and intial state  
0

0
ii

xx  , ni ,...,1 , 

manufactures the state according to the law (3); see Figure 1. 

 

Fig1. A control system 

1.3. Performance Criterion 

A performance criterion (also called cost functional or simply cost) must be specified for evaluating the performance 

of a system quantitatively. By analogy to the problems of the calculus of variations, the cost functional 

RttUI ],[:
10

 may be defined in the so-called Lagrange form: 


1

0

))(),(,()( 0

t

t

dttutxtfuI
.    (4) 

1.4. Physical Constraints 

A great variety of constraints may be imposed in an optimal control problem. These constraints restrict the range of 

values that can be assumed by both the control and the state variables. One usually distinguishes between point 

constraints and path constraints; optimal control problems may also contain isoperimetric constraints. All these 

constraints can be of equality or inequality type. 

1.4.1. Point Constraints.  

These constraints are used routinely in optimal control problems, especially terminal constraints (i.e., point 

constraints defined at terminal time). As just an example, an inequality terminal constraint of the form: 
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   0,
11
txt ,    (5) 

May arise in stabilization problems, e.g., for forcing the system's response to belong to a given target set at terminal 

time; another typical example is that of a process changeover where the objective is to bring the system from its 

actual steady state to a new steady state: 

   0,
11
 txt .    (6) 

1.4.2. Isoperimetric Constraints.  

Like problems of the calculus of variations, optimal control problems may have constraints involving the integral of 

a given functional over the time interval ],[
10
tt  (or some subinterval of it): 

 
1

0

))(),(,(
t

t

Cdttutxth .    (7) 

1.4.3. Path Constraints.  

This last type of constraints is encountered in many optimal control problems. Path constraints may be defined for 

restricting the range of values taken by mixed functions of both the control and the state variables. Moreover, such 

restrictions can be imposed over the entire time interval ],[
10
tt  or any (nonempty) time subinterval, e.g., for safety 

reasons. For example, a path constraint could be defined as: 

     ,0,, tutxt ],,[
10
ttt     (8) 

Hence restricting the points in phase space to a certain region 
nRtx )(  at all times. In general, a distinction is 

made between those path constraints depending explicitly on the control variables, and those depending only on the 

state variables (“pure” state constraints) such as: 

  ,U
k

xtx   ],,[
10
ttt     (9) 

for some  nk ,...,1 . This latter type of constraints being much more problematic to handle. 

III. THE ALGORITHM OF THE METHOD OF VARIATIONS 

The algorithm consists of 9 steps: 

1. Guess an initial approximation of control 
0

U . 

2. Break interval ],[
0 k

tt  to n  parts, constituting a uniform system of units. 

3. Select starting node 
0

t , which will be a variation of controls. 

4. Compute .)(
0

UtU   

5. Compute ),(tx )(tu by solving (3). 

6. Calculate )(uI  according to (4). 

7. Go to 
1

t
 
and go to step 4 for all remaining points .

i
t  

8. Determine the minimum value of the criterion calculated for all points it  and define a new control 
1

U
 

corresponds to the lowest value criterion.  

9. Set .
2

U
U


   Then, with the control

1
U , go to step 3 until will not find variation in which the performance 

criterion will not be improved. 
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IV. DISCUSSION 

The software for the numerical calculations presented below in this article was developed in Borland 

Delphi environment.  For each of the following cases, we will compute the Euclidean norm of the solution error: 

  ,)( 2

111



i

iix
txx  

  ,)( 2

222



i

iix
txx  

  .)(
2




i
iiu

tuu  

Example 1. Consider the following optimal control problem: 

   

     







;

,

12

21

tutxtx

txtx





                                                                                                                                              

(10) 

  00
1

x ,   ,00
2

x                                                                                                                                                   (11) 

,20  t                                                                                                                                                                  (12) 

.1u                                                                                                                                                                          (13) 

The performance measure is: 

    .min2,
221

 xxxI                                                                                                                                        
(14) 

The optimal control problem is to find a control law  u  which minimizes cost functional (14) 

The necessary conditions, derived from calculus of variations, can be solved analytically; and we obtain for the state 

and control variables of the optimal trajectory in 20  t : 























.2
2

3
,1

,
2

3

2
,1

,
2

0,1

)(








t

t

t

tu

 
























.2
2

3
,1sin4cos

,
2

3

2
,1sin2cos

,
2

0,1cos

)(
1








ttt

ttt

tt

tx

 














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
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


.2
2

3
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,
2

3

2
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,
2
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)(
2



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

ttt

ttt

tt

tx

 

The minimum functional value of is 4)2(
*

2
x . 
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Fig. 2 - Fig. 3 shows the comparison between numerical solution and approximate solution for 3.0
0
u . It can be 

noticed that curves are in good agreement. Next, we found simulation results for different initial guess and accuracy 

of this problem; see Table 1. 

 

Fig2. The suboptimal states, Example 1 

 

Fig3. The suboptimal control, Example 1 

Table1. Simulation results for different initial guess and accuracy, Example 1 

№ u0 Accuracy Elapsed time, s. u
  

1x
  

2x
  Imin 

1 0 0,1 2,06 3,06 1,11 1,21 -3,74 

2 0 0,01 2,85 2,99 0,14 0,15 -3,97 

3 0 0,001 4,12 2,987 0,018 0,019 -3,9949 

4 -0,6 0,001 3,94 2,854 0,019 0,016 -3,9958 

5 -0,9 0,0001 12,06 2,0024 0,1086 0,1089 -3,9994 

6 0,1 0,00001 23,35 2,0023 0,1093 0,1088 -3,9997 

Example 2. Consider the following optimal control system: 

   

   







;

,

2

21

tutx

txtx



                                                                                                                                                                (15) 

  10
1

x ,   ,00
2

x                                                                                                                                                   (16) 

,5.20  t                                                                                                                                                                    (17) 
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,1u .5.0
2
x                                                                                                                                                       (18) 

The performance measure is: 

      .min5.25.2, 2

2

2

121
 xxxxI                                                                                                                           

(19) 

The optimal control problem is to find a control law  u  which minimizes cost functional (19) 

The exact solution is: 

















.5.22,1

,25.0,0

,5.0,1

)(

t

t

t

tu
 

Fig. 4 - Fig. 5 shows the comparison between numerical solution and approximate solution for 1.0
0
u . Table 2 

presents simulation results for different initial guess and accuracy of this problem. 

 

Fig4. The suboptimal states, Example 2 

 

Fig5. The suboptimal control, Example 2 

Table2. Simulation results for different initial guess and accuracy, Example 2 

№ u0 Accuracy Elapsed time, s. 
u

  
1x

  
2x

  Imin 

1 0 0,1 1,12 5,46 2,97 2,58 0,15 

2 0 0,01 3,41 1,79 0,09 0,102 0,0001 

3 0 0,001 3,95 1,807 0,088 0,102 0,0001 

4 -0,6 0,001 4,34 1,695 0,096 0,102 0,0001 

5 -0,9 0,0001 7,98 1,5092 0,0885 0,1026 0,0001 

6 0,1 0,00001 13,48 1,50543 0,08875 0,10224 0,00014 
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V. CONCLUSION 

For many optimal control problems, the method of variations is the best option we have. The advantage of this 

algorithm is that it does not have requirements with initial guess.The algorithm has good convergence and can be 

used to solve a large class of applications in various fields of national economy. 
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