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I. INTRODUCTION 

The   general   solution    of  the   Cauchy   problem   for   a  second-order   linear hyperbolic   partial  differential   

equation  in  two  variables  is  often  given  in  terms of  integrals   involving    an  auxiliary   solution   called  the  

Riemann  function.    

By  either  method,  completion   of  the  problem  requires  the  determination   of  auxiliary   function,   which   is  

a difficult   task because there  is  no  unified   method for  actually   finding   this  function.   Methods   for  finding    

Riemann   functions have  been  given  by  Riemann  [1],  Copson  [4],  and Mackie [8].  Regrettably,  there  are still  

only  a few  equations  with  known Riemann  functions.  

This paper is of a synthetic nature, being a result of combining Riemann’s method [3] for integrating second-order 
linear hyperbolic equations with Lie’s classification [11] of such equations. Using the results for the group 

classification of homogeneous hyperbolic equation of the second order, it was suggested to find a function of 

Riemann using the symmetries of the equation.  

II.  PRELIMINARIES 

Let’s consider the following hyperbolic equation of  the second order: 
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in an open domain D , which is bounded by curves  of AC ( 0 xy ), CB ( 1 yx ) and with the 

section AB ( x ). 

Let’s pose the problem of Cauchy: Find in the domain D  function ),( yxu , satisfying the conditions 
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where )(y , )(y − given sufficiently smooth functions. 

Applying real coordinate transformation yx  , yx    equation (1) leads to the canonical form: 

0
)(sin

)1(
2

2












r

u
u , (6) 

where  r  and boundary values 
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We shall define the operator L by the identity 

ucubuauLu ),(),(),(    . (7) 

The operator 
*L  defined by the identity 
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is known as the adjoint of  L. 

To solve the problem we use the method of Riemann, which is based on the following identity: 
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If the functions v and u are such that 0 LvLu  throughout a domain G bounded by sufficiently smooth 

closed curve Γ. Then an application of Green’s theorem yields 
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Riemann’s method reduces the problem of integration of the equation  

fLu  . 

To that of constructing the auxiliary function ),;,( 00 Rv  , solving the ad joint equation: 

0* RL  

and satisfying the following conditions on the characteristics: 

.1),;,(

,0)(

,0)(

0000

0

0

















R

bRR

aRR

                       (9) 



American Research Journal of Mathematics, Volume 1, Issue 3, 2015 

ISSN 2378-704X 

www.arjonline.org                                                                                                                                       56 

Provided that the function v is known, the solution of the Cauchy problem: 
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with data on an arbitrary non-characteristic curve Γ is given by the formula 
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where the double integral is taken over the domain bounded by the characteristics 0  ,  0  and the curve  

Γ.  The function ),;,( 00 Rv   is called Riemann’s function, and the boundary-value problem (9) is 

called the characteristic Cauchy problem, or the Goursat problem.  The solution of the Goursat problem is unique.  

III.  MAIN RESULTS 

In our case, the equation adjoint equation (5) has the form 
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Let’s note that in our case the desired function of Riemann ),;,( 00 Rv  satisfies the following 

conditions on the characteristics: 
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The symmetry operator of the homogeneous equation (10) has the form [4]: 
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Thus, as follows from [5], must be done the following relations: 
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Substituting in this case 0a , 0b , 

)(sin2 






r
c , we’ll obtain the following relations 
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The solution of this partial differential equation of the first order will functions  
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)(cos)(cos)(sin)(sin 22   CBA , 

)(cos)(cos)(sin)(sin 22   CBAw , D . 

where DCBA ,,, − arbitrary constants. Thus, equation (12) admits the three-parameter group (in addition to 

stretchings of the variable u and the infinite group consisting of addition to u of any solution of the equation; this 

group is common to all linear equations) with the generators  
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Let us find a linear combination of these operators,  
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where 4321 ,,,  − arbitrary constants. 

Following [6], let us require first the invariance of the characteristics 0  ,  0  . The invariance test has 

the form: 

)( 0 X =0, 0)( 0 X . 

One can set 11  , then obtain )( 02   tg , )( 03   tg . One can readily verify that the 

resulting operator  

   






 )(cos)(sin)()(cos)(sin)( 00 tgtgX  

  






 )(cos)(sin)()(cos)(sin)( 00 tgtg  

is admitted by the Goursat problem (10). 
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The solution of the obtained equation is function Gauss 
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Then the Riemann’s function in the (  , ) will have the form  
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Substituting in the formula 0a , 0b , 0f  obtain 
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Returning to the old variables x and y, we’ll get the solution of the Cauchy’s problem 
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THEOREM.  If the functions
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unique solution, which is defined by (14). 
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