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Abstract: Recent years the theory of first degree or linear indeterminate analysis initiated by Āryabhaṭa I (b.476 

AD) are widely appreciated and used in modern sciences on accounts of its varied applications in the field of 

mathematics, astronomy, coding theory, cryptography, information systems, computer design and signal 

processing. This paper   intends to present the progress in the areas of linear indeterminate analysis from fourth 

century BCE to modern times. Examples and applications of significance have been presented with a view of 

mathematical learning. 
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I. INTRODUCTION 

The indeterminate (generally called Diophantine) equations are those algebraic equations in whichi) the values of n 

unknowns nxxx ,....,, 21 involved are all positive integers, and ii) for n unknowns number of equations are .1n

In particular for two unknowns there will be only one equation. 

The most general form of linear equations in 0,0  yx are given by ,0 CByAx where 0A and 

CB, are either positive or negative.  Under these conditions, we have just two forms of equations, viz. 

cbyax 
                                                                                                                                                          

(1) 

and 

cbyax 
                                                                                                                                                          

(2) 

In these equations a  and b  are relatively prime, that is, 1),gcd( ba . If a  and b have common factor, then so 

must have c . Such equations in ancient Indian mathematics have been designated by the termkuṭṭaka, kuṭṭa, 

kuṭṭākāra, kuṭṭikāra(pulveriser). Kuṭṭ means to break or pulverize into pieces by means continued division. The 

termsa is called dividend (bhājya), b devisor (hara), c interpolator (kṣepa, kṣepaka) (+c additive, -c subtractive), x 

multiplier (guṇaka, guṇakāra, guṇa) andy quotient (phala, labdhi). 

Any solution of (1) is said to be optimal if aybx  0,0 and of (2) if either ayorbx  or both. 

Notice that (1) always possesses infinite number of solutions whereas (2) has finite number of solutions or 

sometimes no solution. The solution of (2) has been given by Brahmagupta by converting it into the type 
 

.cbyax   

Transmission and Foreign Contribution [AKB & SK] 

The problems appear in the Śulbasūtras (200-800 BCE) in the form of simultaneous equations and are due to altar 

construction. ĀryabhaṭaI (b. 476AD), the first Hindu algebraist, is credited for devising excellent method for 

solution of (1) which later resembled Euler (1764) method of continued fraction.  

Continued fraction is a process of converting a fraction into a continued division and most likely originated due to 

finding rational approximation to .N  Euclid (300 BCE) of Greek is credited to have made the earliest step in the 
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theory of continued fraction and applying to determine the gcd of two lines to the gcd of two numbers. Indians made 

systematic use of the theory of continued fraction in the works of Āryabhaṭa I onwards.  

Regarding Greek contribution, Nicomachus of Geresa (first century AD) gave an example on the problem of 

remainders involving linear indeterminate analysis. The answer was provided without a method. 

Diophantus of Alexandria (250AD) discussed the problems of second and higher degree indeterminate equations but 

did not consider the first degree indeterminate equations. Further, he provided no method of solutions and was only 

concerned with rational solutions.  

According to Kaye, primarily notions of Greek geometry, which is responsible for the evolution of the rule, is not 

found common among Indian works as it has been traced in Greek works. 

The basis for Chinese contribution is placed in the following problem leading to simultaneous equations found in the 

Sun-Tzu Suan Ching (Master Sun‟s Arithmetical Manual, fl 280-473 BCE according to Needhm): “We have a 

number of things, but do not know how many. If we count them by threes we have two left over. If we count by 

fives we have three left over. If we count them by sevenths we have two left over. How many things are there?” 

[SK]. The solution was provided without a method. 

The application of equation caxby  was first found in a calendrical work, Ta-Yen Li Shu (Book of the Ta Yen 

Calendar) of I-Hsing (687-727 AD) with a method Ta-Yen-Shu which is similar to the Indian method of kuṭṭaka. I-

Hsing visited India in 673AD, became a Tantric-Buddhist monk and learnt Sanskrit. According to Bag [AKB], it is 

quite probable that I–Hsing acquired the technique of solving indeterminate problems from Indian scholars and it 

was through his effort the knowledge was carried to China. It was five century later when Chhih Chiu-Shao (c. 1247 

AD) gave full explanation to the method in his Shu Shu Chiu Chang. 

According to Smith, Hindu treatment of indeterminate equations of first degree was original and not influenced by 

Chinese or Greek writers.  

Integral solutions of some indeterminate equations based on trial are found in the work Kitab al-taraifI’lhisab (Book 

of Rare things in the Art of Calculation) of Arabic scholar AbuKamilal-Misri(c. 850-930 AD). 

The problem of remainder is found in the works of Islamic Ibn al-Haitam (c.1000 AD) and Italian Leonardo Pisano 

(Fibonnaci) (c. 1202 AD). Through the knowledge of work of Pisano, Rigiomontanus (1836-1876) proposed a 

problem similar to that of Āryabhaṭa I. In the eighteenth century, the legends L. Euler, L.J. Langrage and C.F. Gauss 

strengthened the remainder problems 

II. METHODS FOR SOLVING bycax   

2.1. First Method (Āryabhaṭa I) 

To find the number (N), which when divided by a given number a will leave a remainder 
1r  and when divided by 

another number b will leave a remainder .2r  

Symbolically we express: ).(mod)(mod.., 2121 brarNeirbyraxN   

Āryabhaṭa I keeps 21 rrc  always positive. Consequently, this leads to the form: 

b

cax
y


 or                                    (3) 

a

cby
x


                                                                                                                                                               (4) 

Āryabhaṭīya II,v.32-33[D-S] states:  

“Divide the divisor corresponding to the greater remainder by the divisor corresponding to the smaller. The residue 

(and the divisor corresponding to the smaller remainder) being mutually divided, the last residue should be 

multiplied by such an optional integer that the product being added (in case the number of quotients of the mutual 
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division is even) or subtracted (in case the number of quotients is odd) by the difference of the remainders (will be 

exactly divisible by the last but one remainder. Place the quotients of the mutual division successively one below the 

other in a column; below them the optional multiplier and underneath it the quotient just obtained). Any number 

below (the penultimate) is multiplied by one just above it and then added by that just below it. Divide the last 

number (obtained by doing so repeatedly) by the divisor corresponding to the smaller remainder, then multiply the 

residue by the divisor corresponding to the greater remainder and add the greater remainder. (The result will be) the 

number corresponding to the two divisors”. 

Suppose ,ba  we get [PSb] 

ii

nnnn

nnnn

rrbr

rqrr

rqrr

rqrr

rqrr

rqrb

rbqa























11

11

112

4332

3221

211

10

0,0

,

 

Now substituting the values in (3) and (4), we find 

1) 10 yxqy                                  1.1)   cxrby  11  

2) 111 xyqx                                 1.2)  cyrxr  1211  

3) 2121 yxqy        1.3)   cxryr  1322  

4) 2231 xyqx    1.4)  cyrxr  2423  

……………………….. 

2n-1) nnnn yxqy   1221                  1.2n-1)   cxryr nnnn   11222  

2n) nnnn xyqx   121  1.2n)  cyrxr nnnn  212  

2n+1) 112   nnnn yxqy                    1.2n+1)  cxryr nnnn   1212  

[If .,0, 10 arqba  ] 

Case 1(Āryabhaṭa I’s Algorithm).Suppose that mutual division of dividend and divisor is stopped after having 

obtained an even or odd number of quotients. 

Subcase 1.1. If the number of partial quotients (excluding 0q ) obtained be even, the reduced form of the original 

equation is (1.2n+1), i.e. .1212 cxryr nnnn    

Giving a suitable integral value t to ,nx we make 

,1

2

12
1 t

r

ctr
y

n

n
n 


 

 an integer 
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We now obtain an integral value for ny by ).12( n The values of x and y will now be calculated as proceeding 

before. 

Subcase 1.2. If the number of partial quotients (excluding 0q ) be odd, the reduced form of the original equation is 

(1.2n), i.e. .212 cyrxr nnnn   

Putting a suitable integer t  for ,ny we have 

,1

12

2 t
r

ctr
x

n

n
n







an integer 

Now proceeding as before we obtain the values of x and y. 

Case2 (Improved Āryabhaṭa I’s Algorithm) [IAA]. First suppose that the mutual division is continued until the 

zero remainder is obtained. Since a,b are co-prime, the last one remainder is unity. 

Subcase 2.1. Let the number of partial quotients (excluding 0q ) be even. Therefore, we have 

122122 ,0,1   nnnn rqrr and so from (1.2n+1), cyn 1 and from (2n+1), .2 cxqy nnn   

Giving a suitable integral value tto ,nx we get an integral value for .ny Proceeding backwards step by step we 

ultimately obtain the values of x and y in positive integers. 

Subcase 2.2. If the number of partial quotients (excluding 0q ) be odd, then .,0,1 2212212   nnnn rqrr The 

equations (2n+1) and (1.2n+1) will be absent and so from (1.2n), cxn  and from (2n), .121 cyqx nnn    

Giving an arbitrary integral value t to ,ny we obtain an integral value for .1nx Then proceeding backwards as 

before we calculate the values of x and y in positive integers. 

Let the number of partial quotients n (excluding 0q ) be even or odd. Valli, the column of partial quotients, starts 

from the last term at the bottom and proceeds upward. The solution ,x y  is obtained. The least solution   , is 

obtained from abrading or scraping off as such .0,0,, abamyblx    

Table1. Case 1 

Remainders Valli (column of iq  ) Guṇa (x),Labdhi (y) 

1r  0q  yq  0210   

2r  1q  xq  2321   

3r  2q  2431  q  

… … … 

… … … 

1nr  2nq  212   nnnnq   

nr  1nq  11   nnn tq   

1nr  nq  nn ttq  1  

 t x 

 
1t  x 
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Table2. Case 2 )0,( 1  tct  

Remainders Valli (column of iq  ) Guṇa (x),Labdhi (y) 

1r  0q  yq  0210   

2r  1q  xq  1321   

3r  2q  2431  q  

… … … 

… … … 

1nr  2nq  212   nnnnq   

nr  1nq  11   nnn ccqq   

1nr  nq  nncq   

 c x 

 0 x 

Evidently, the solution follows the recurrence relation iiiiq    21  

General Solution 

Let   yx , be the least solution of  

.bycax 
                                               

(5) 

Then 

. bca                                                (6) 

Subtracting (6) from (5), we write 

,m
a

y

b

x





 
say 

This implies     ,.....2,1,0,mod,mod  maamybbmx   are the general solution of (5). 

Clearly, the solutions x and yare the infinite arithmetic progression (A.P.) with first term , common difference b 

for x, and first term  , common difference a fory. 

Aliter. The solution can also be obtained from (6) as ).()( amcbbma    

Also from (6) 

).()(   abcba                                     (7) 

Thus it   yx , is a solution of (5), then   aybx , will be the solution of .bycax   

Remark. Sometimes it is also possible to find the least solution by trial. 

Labdhi and guṇaare obtained according to the following table: 

Table3. 

Valli (excluding 0q ) Kṣepa(c) Labdhi (y) Guṇa(x) 

even or odd negative or positive     

even or odd positive or negative a  b  
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Here it is important to note that the values of x and y are sometimes not the corresponding values. The corresponding 

values x or y can be obtained by putting in the given equation.  

Remark. In case there is only one partial quotient, say k of (2), i.e. ,1 kba  the method as prescribed before 

fails. 

Table4. 

Valli x,y 

k xck   

cc   yc   

0  

If kṣepa is positive, then .,   aybx  

If kṣepa is negative, then .,   yx  

Here ),(  is the smallest positive solution. 

Example1. Consider the problem .7010063  xy  

Table5. 

S.N. Remainders Valli  iq  x,y 

0  1 y 0189070011901   

1 37 1 x 111904907001   

2 26 1 
27004902101   

3 11 2 
3490702102   

4 4 2 
421070702   

5 3 1 
570701   

 1 70c  x 

  0 x 

Divide x by 100 getting remainder 90. .6356 tx  Also divide y by 63 getting remainder 56. .10090 ty 

The least solution is )90,56(),(  after verification. 

Example2. Consider the problem .7010063  xy  

The least solution is ),90100,5663(),(   ab i.e. (7, 10) after verification. 

AfterĀryabhaṭa I the method for cbyax   was followed by Bhāskara I (600 AD), Brahmagupta (628 AD), 

Govindasvāmi (c.850 AD), Prthudakasvāmi (c. 850 AD) and Śripati (1039 AD).  Āryabhaṭa II (950 AD) continued 

the mutual division till the remainder became 1. Mahāvira(850 AD) and Bhāskara II (b. 1150 AD) simply adopted 

the method of Āryabhaṭa I and extended to (1). 

Later scholars involved are: Devraja, NārāyaṇaPaṇdita, Jyesthadeva, Kamlākara and Putuman Somayaji.  

Improvement upon IAA 

Some of the remainders are taken to be as least and may be negative, in such casesfew of the partial quotients may 

turn out to be negative. This subsequently improves the speed of improved ĀryabhaṭaI‟s Algorithm.  
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Example3.Consider .7010063  xy  

Table5 

S.N. Remainders Valli x,y 

0  1 y 0189070011901   

1 37 2 x 111902107002   

2 -11 -3 
27007070)3)(3(   

3 4 -3 
321070)3(   

4 1 70c   

  0  

Solutions are the same as Examples 1 and 2 but with one step faster. 

2.2. Second Method (Simple Continued Fraction) [TSB] 

Let 

n

n

Q

P

Q

P

Q

P
,....,,

2

2

1

1
 be the successive convergent of

b

a
, then 

,....
11

......
11

21

0

n

n

nn Q

P

qqqq
q

b

a



 if .01 nr  

Here  

0

0

0 q
Q

P
 , 

1

10

1

0

1

1 11

q

qq

q
q

Q

P 
 , 

 
1

1

1

1

21

2210

2

1

0

2

2









qq

qqqq

q
q

q
Q

P
,…….., .

b

a

Q

P

n

n   

Clearly we have the following recurrence relations: 

2,21   nPPqP nnnn  

2,21   nQQqQ nnnn  

where 

11101

000

,1

1,

aQaaP

QaP




 

     

       

      ,...2,1,111

1.......

1

1010

1

101

1

2332

122121112111















nqqqq

QPQPQPQP

QPQPQQqPQPPqQPQP

nn

o

n

nnnn

nnnnnnnnnnnnnnnn

 

Evidently, 111   nnnn PQQP  according as n (number of partial quotients excluding 0Q ) is even or odd, that 

is, .111   nn bPaQ Let ,, 0101 yPxQ nn
  we have 100  ybxa which further gives (1), where 

., 00 ycyxcx  Moreover, we obtain ,, amyybmxx  m an integer. Putting suitable value of m 

will give the least solution  .,  
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Example 4.Let .36013  xy  

Continued fraction 

.
8

13

2

1

1

1

1

1

1

1

1

1
4

13

60



  

137.138.6000  ybxa implies .11137.3,248.3  yx  

The general solutions are: .60111,324 tytx   For 51,11,1  yxt is the smallest solution. 

2.3. Some Specific Forms and Applications 

Rule[Līlāvatī (LV)263] When the Constant is Zero [P-N-S] 

If the constant (c) is zero or divisible by the divisor (b), a multiplier is zero and the (corresponding) quotient is the 

constant divided by divisor. That is, one solution is 0x  and other bcy / . 

Rule (LV 265) When Constant is 1 [P-N-S] 

First solve y
b

ax


1
and get a solution  0,0 yx . Then a solution of y

b

cax



is: x is the remainder in 

b

cx0

and y is the remainder in .0

a

cy
 

Example5 [LV 251][P-N-S]. O friend, one hundred is multiplied by an integer; 90 is added to or subtracted from the 

product; the results are exactly divisible by 63. If you are efficient in pulverization, tell me the multiplier correctly.  

That is, if 90100 x  is divisible by 63, find x. 

The solutions are: tytx 10030,6318  for 90 additives and tytx 10070,6345  for 90 

subtractive, where t is an integer. 

The same example is contained in Bījagaṇita(BG) Ch. 14, v.61 of Bha skara II. 

Example6[BG Ch. 14, v.143] [TBH p. 142-144].Find a number x such that if m is the quotient and p is the 

remainder when 9x is divided by 10 and n is the quotient and q is the remainder when 7x is divided by 10. Given 

.26 qpnm  

Here pmx  309 and .307 qnx   Adding ,262916  kx where .nmk  The least solutions are: 

.14216,27229  yx  The general solutions are: .1614,2927 tytx  Further 

26 qpk  implies .14k Finally, .9,3,6,8  qpnm  

Example 7 [BG Ch. 14, v.144] [TBH p. 144-145].Find a number x such that if cba ,, are the remainders when

xx 7,3 and x9 are divided by 30, then 11 is the remainder when cba   is divided by 30.   

Here ,309 amx  ,307 bmx  cnx  309  and .1130  qcba  Adding 113016  kx by 

letting .kqpnm  Also .1130  qcba The solution is: .3029 tx  Finally, 

.21,23,27  cba  

Pulverizers with the Same Divisor [P-N-S] 

If an (unknown) integer is multiplied by two integers (separately) and the products divided by a (given) leave two 

remainders then  (to find the unknown) assume the sum of multipliers as dividend and sum of the remainders as 

negative constant of a proper pulverizer, which is the union of two pulverizers. 

That is, if ,
b

c
y

b

ax
 i.e. bycax  and ,

b

c
y

b

xa 



i.e. ,ybcxa  then  
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).()()( yybccxaa   

Example8 [LV267][P-N-S] 

If the product of an (unknown) integer and 5 is divided by 63 then the remainder is 7. If the same integer is 

multiplied by 10 and divided by 3 then the remainder is 14. Tell that integer.  

The united pulverizer is .2175 yx  ,.......56,35,14x  

Example9[Krishna Daivajna Commentary on BG].Given the fractional part 11/19 of seconds, find the integral 

parts of seconds, minutes, degrees, signs and the fractional part of revolutions (1 sign=30 degree) 

Suppose that the fractional part 19/x of minutes is to convert into seconds so that 

.
19

1116
..,

19

11
60.

19
y

x
eiy

x



  

[y is integral part of seconds. (10, 31) is the least solution.]  

Thus we recover the integral part 31 of seconds and we see that 19/1019/ x  must be the fractional part of 

minutes involved. Now repeat the above argument. Suppose that the fractional part 19/x of degree is to convert 

into minutes so that 

.
19

1016
..,

19

10
60.

19
y

x
eiy

x






 

(16, 50) is the least solution. 

Similarly, we find (17, 26) and (3, 1) the least solution of y
x




19

1613
 and y

x




19

1712
respectively. 

Hence complete answer is: srevolutionorsign
19

3

19

11
31,05,26,1




 

Application: Vīrasena (Dhavalāṭika, c.816) Equation [M-Sa]  

„The diameter multiplied by 16, increased by 16, divided by 113, and (again) combined with thrice the diameter is 

(the circumference) more accurate than the accurate one‟. 

113/)1616(3  ddc   (8)     [Dimensionless] 

Equivalently, 

dcp
d

p /,
113

16

113

355
                      (9) 

(9) ismonotonically decreasing. 

From (8) 

16355113  dc  

Solving 

,....2,1,0,113112;355352  twheretdtc  

Pie corresponding to 112..,0  deit    is 22/7 

Pie corresponding to 20000..,176  deit    is 62832/20000 
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Pie corresponding to  deit ..,    is 355/113 

Inequalities for Pie  

Various significant values of Pie including series representation exist in India [M-Sb]. Takao Hayashi‟s [M-Sa] 

argument that there was no attempt in India to find the range for Pie is not worthwhile as we established inequality 

7/22113/355  (from Vīrasena‟s verse) comparable to 7/2271/223  (Archemedes, fl. 287-212 

BCE). Using remark of Vīrasena and taking ĀryabhaṭaI‟s value for pie 62832/20000 in consideration, Mishra and 

Singh [M-Sa] established 

.1416.3...1415929.3..,20000/62832113/355   ei  

III. EQUATIONS WITH NEGATIVE DIVIDEND: cbyax   

Equation cbyax  possesses only a finite number of solutions. Even sometimes equation of this type may not 

have a solution. Distinction is that for Form (1), for both cases c and –c, common difference is positive for both x 

and y whereas for above form, this is positive for one variable and negative for the other variable.  

3.1. First Method (Nārāyaṇa) [PSb] 

If   yx , be a solution of (5), then   yx , or   yx , will be a solution of 

.caxby   

3.2. Second Method [TBH] 

Write (2) in the kuṭṭaka form .y
b

cax



 

Ignore the negative sign of dividend (-a) and proceed to construct valli etc. as before for solution of (1). After 

scraping off we get values of x  and .y  Now if  

i) Valli yxboddn   ,,  

ii) Valli yaxevenn   ,,  

Here it is important to note that they are not the corresponding values in general, infact they are the smallest possible 

positive values of x and y. They are corresponding values exactly when there is one and only one solution.  

Substituting in the equation we get their greatest values. Now as x and y are in arithmetic progressions. So one of 

them is increasing while the other decreasing, since the sum byax   must remain constant. 

3.3. Third Method (Brahmagupta) [TBH] 

1) Convert
b

cax
y


 into 

b

cax
y


 and proceed to construct valli etc as before for the solution of (1).  

2) Quotient when dividing labdhi and guṇaby a and b respectively, must be the same and we obtain ., yx   

Meaning is: ., yalyxblx  l-quotient 

We get x,y . Write it as ),( vu and verify in (2). 

3) vaybux  , and verify in (3). vu, may be negative. 

4) Values for x and y are both in A.P., when x increases, y decreases and vice-versa, since the sum byax   is 

constant. Finally, take only the positive solutions ).1(,...,2,1,0,,  Nmamybmx  . 

3.4. Fourth Method (Simple Continued Fraction) [TBH] 
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Express a/b as Simple Continued Fraction with even (i.e. n =odd) number of convergents (by continuing process of 

mutual division till remainder becomes zero). If not then make it even by breaking last quotient. Make use of 

penultimate convergent 11 /  nn QP in .111   nn bPaQ Let ,, 0101 yPxQ nn
  we have 100  ybxa

which further gives (2), where ., 00 ycyxcx  further, we obtain ,, yamybmxx  m an integer. 

Putting suitable value of m we give the least solution  .,  Now since 0,0  yx and so we get the values of 

m lying in .
b

x
m

a

y 



 This implies ,SRmsr  where .10,10  Sm  Thus we get the 

number of solutions, .rRN   

Exampl10 [TBH, p. 26]. Let .10672911  yx  

Continued fraction 

.
8

3

1

1

1

1

1

1

2

1
0

29

11



  

13.298.1100  ybxa implies .3201,8536  yx  

The general solutions are .320111,298536  tytx  

.
29

10
294291..,

29

8536

11

3201
 meim The number of solutions is .3291294 N  

We write ).291(11,10)294(29  tytx For ,294,293,292t the solutions are (66, 11), (39,22) and 

(10,33). 

3.5. Fifth Method (Taylor) [TBH] 

Off a and b choose smaller one, say a. Divide b and c by a to obtain remainders br and cr respectively. 

1) Write down the natural numbers from 1 to ).1( a  

2) Multiply these by .br  

3) Divide these numbers by a and write down only the remainders. Count the place of remainder ,cr called the rank 

of ,rrc  say. It will give .ry   Substituting in the given equation (3) will yield the corresponding value x. 

4) Here we note that second and third steps become very laborious when a and b are large. These steps are 

equivalent to the following: We require the smallest number 11  ax such that xrb leaves remainder cr

when divided by a, i.e. .cb ranxr  From where we find integer x by trial corresponding to the least positive 

integer n. Substituting in the given equation (3), we get corresponding y.  

3.6. Method for Obtaining Integral Solutions [M-S] 

Consider bac  in (2). Let the solutions be ).1(,...,2,1,0,,  Nmamybmx  ),(  is 

the least solution of (2). We set the pair as: 

.,....,, max21 xxxx N   

.,,....,, 121max   yyyyy NN  

The N solutions are:      .,,.......,,,, 1121 yxyxyx NNN   Further ),( yx is optimal solution if either or both of  
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., aybx                                               (10) 

Similarly for ).,(  Moreover, there exist two integers ML  0 such that the solution ),( yx satisfies (10) 

when MLLm ,....,1,  but fails to satisfy either of them when .MmorLm  Thus after obtaining ),( 

calculate yx  for 0m  until ),( yx    satisfies neither of (10). Similarly proceed for negative values of m. 

Thereafter find all the values of yx  , the smallest one will be the optimal solution. 

Write (2) as  
a

bpc
x


  and .

b

apc
y


 Once a zero remainder is obtained we stop and ),(  is obtained. If 

the zero remainder is observed in the first step then 
a

bpc 
 and ;p otherwise p and .

a

bpc 
  

Remark: If one solution is positive other has to be negative. 

In his example of ,8103  yx Mauch and Shi [M-S] find the two solutions (6,-1) and (-4, 2) with later as 

optimal solution. 

Exampl 11.Let .10687  yx  

Table6. 

p 

7

8106 p
x


  

quotient remainder 

8

7106 p
y


  

quotient remainder ),(   

0 106/8 13 2 106/7 15 1 No 

1 99/8 12 3 98/7 14 0 Yes )1,14(  

Table7. 

p ),( yx  yx   Relation (10) satisfied or not 

0 )1,14(  15 Yes 

1 )6,22(   28 No, stop increasing value of p 

-1 )8,6(  14 Yes 

-2 )15,2(  17 Yes, but solution does not exist 

-3 )22,10(  32 No, stop decreasing value of p 

Out of two solutions (14, 1) and (6, 8) with former as optimal solution. 

Application: Magic Squares with Entries in A.P.[PSa] 

Let n be the total number of cells in the magic square (MS) and N its order. The MS is called double even, single 

even or odd accordingly .3414,24  mormmn  

Square constant S is defined by  

 
.

2

)1(2

N

dnan

N

T
S


  

S may be even (=2m) or odd (=2m+1). 

No. of steps=N=No. of cells in a row (caraṇa) of MS= Order of MS= .n  
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For   ,
2

)1(
)1(2

2
,1,1 sdnad

nn
nadna

n
Tda 


 where sum of all natural numbers 

.
2

)1( 


nn
s This means the first term a and common difference d of the A.P. are to be solved using pulverizer 

(kuṭṭaka) for generating equation .naTsd   

Example12 (GK Ch. XIV). O learned, if you have pride in mathematics, tell the integral first term (=1) and 

common difference (=1) of magic squares (whose) total number of cells are 16, 36 and 9 and (whose) totals are 400, 

1296 and 180, in order. 

Accordingly, the pulverisers are: ,50152  da 72352  da and .204  da  

The least solutions are respectively (25, 0), (1, 2) and (20, 0). 

IV. GENERAL PROBLEMS OF REMAINDERS 

To find a number N which when divided by given positive numbers naaaa ......,,, 321 leaves the remainders 

(positive numbers) nrrrr ......,,, 321 respectively. That is, to solve the )1( n simultaneous equations: 

nnn rxarxarxaN  .....222111                                (11) 

Here it is important that a common solution certainly exists if sai ' are pairwise co-prime or GCM of ,ia
ja

divides ji rr  for all ji,  such that .1 nji   Also if m is the least positive value of N then the general value 

is ,dtmN  where d is the LCM of naaaa ......,,, 321 and  t any non-negative integer. 

The solution of (11) was known to Āryabhaṭa I,Bhāskara I, Brahmagupta, Mahāvīra, Bhāskara II and Nārāyaṇa 

4.1. .3n  

In this case we have three methods for .333222111 rxarxarxaN   

First method (Sun-Tsu) [TBH and UL]. Use of intermediary variable (here 2x ) 

Solving first equation formed from variables 21 , xx by kuṭṭaka, we get solutions in A.P. form as  

0,1min22

2min11





ppaxx

paxx
                                                        (12a) 

Solving second equation formed from variables 32 , xx  by kuṭṭaka, we get solutions in A.P. form as: 

0,3min33

'

2min22





qqdxx

qdxx
                                                                     (12b) 

For common solutions of two equations, we take values common to the above two series of values for 2x  and then 

take the corresponding values of 1x  and .3x This gives the general solution 

min3213min2312min1321 ,, xtaaxxtaaxxtaax                  (12c) 

and 

  ,0,..,min min1321111  tdtNNeirxtaaarxaN               (12d) 
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where ., 3211min11min aaadrxaN   

Example 13(Sun Tsu). .273523  zyxN  

kuṭṭakaI gives .1,2  yx The General solutions are: .31,52 pypx   

kuṭṭakaII gives .3,4  zy  The General solutions are: .53,74 qzqy   

Corresponding to ,4y we have .3,7  zx   

Hence .153,214,357 tztytx   

Second Method (Brahmagupta)[TBH] 

Form I. Get upto 

0,122

211





ppaxx

paxx
 

Now 

   .1min112112min11min rxapaarpaxaN   

Equating with third equality, we obtain second equation in p and .3x  

  .3331min1121 rxarxapaa                                                           (13) 

This gives 

0,21min33  qqaaxx and 

  .1min1121321321min33min rxapaaqaaarqaaxaN   

Here min3x is the smallest value of 3x satisfying this equation so that .3min33min rxaN  min1x and min2x can be 

easily obtained from ., 2min22min1min11min rxaNrxaN   

Proceeding in this way successively we find 

  .............. 1111121321321min33 raaaaqaaaarqaaxaN nnn     

Similar method is prescribed by Mahāvīra (Gaṇitasārsaṅgraha) and Nārāyaṇa (Gaṇitakaumudī).Nārāyaṇaoffers 

extended version of the above rule. 

Example 14 [GK] [PSb]. Tell the numbers which when divided by 3,5 and 7, leave the remainders 1,3 and 5, (in 

order)  

.573513  zyxN  

kuṭṭakaI gives .2,4  yx Using (13), .7815 zp   This gives .14,6  zp  

Now 103514.7min N implies ,3513103  yx yielding .20,34  yx  

Hence .1514,2120,3534 pzpypx   

Form II. Let .21 aa  Then first equality can be written as  

  ., 21212211 xxXxaarrXa   

Let 
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 

2

'

22min1

1

'

22

12

'

0,

rxaN

ppaxx

paaXX







                                                                      (14) 

be the solution of above first equation.  

Now proceed as in Form I. 

Form III. Get upto (11) of Form1or (14) of Form II.  

Substituting 2x in the second inequality, we get second kuṭṭaka .333min121 xarNpaa   

Let R,S be the respective remainders when min1N and 21aa are divided by C. Thus obtaining 

ScsaaRcrN  21min1 , and substituting in the second equation, we have 

,3 cqrRSp  where .3 rspxq   

Now   ,2

'

2min122min22min rxpaarxaN  from FormI 

.min1min21 Npaa   

4.2. .4n  

First Method (Brahmagupta)[TBH] 

Consider .222111 rxarxaN   Proceed upto (11) so that .0,min1211  mNmaaN  Changing 

21 NN  and let .333min1212 rxaNmaaN   

.3

'

33min2 rxaN  .0,min23212  nNnaaaN  

Changing NN 2 and letting ,444min23212 rxaNnaaaN  .4

'

min44min rxaN   

General solution obtained is: 

.,,, min43214min34213min24312min14321 Ntaaaxxtaaaxxtaaaxxtaaax   

.min4321 NtaaaaN   

Second Method (Splitting up)[TBH] 

Splitting the equations into two sets 

.2221111 rxarxaN                                                                     (15) 

.4443332 rxarxaN                                                      (16) 

Solving (15), .0,min1211  mNmaaN  

Solving (16), .0,min2432  nNnaaN  

Equating 21, NN for common solution  ,21 NNN  we obtain kuṭṭaka in m,n. So we find 

.min1

'

min21min NmaaN   

From given equation we easily obtain .,,, min4min3min2min1 xxxx  General solution is governed by (15). 
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4.3. .5n  

Consider two sets 

.3332221111 rxarxarxaN                                            (17) 

.5554442 rxarxaN                                                           (18) 

Solve for 21, NN as above and equate for common solutions. 

Let .6n  Consider two sets 

.3332221111 rxarxarxaN                                         (19) 

.6665554442 rxarxarxaN                                       (20) 

Solve for 21, NN as above and equate for common solutions. 

4.5. In the similar way solution for ,....8,7n  can be obtained. 

V. PROBLEMS OF SAMSLISTAKUṭṭAKA (CONSTANT PULVERIZER) 

5.1. Part I. First Method 

To solve simultaneous equations 

11111 cxayb                    (21) 

22222 cxayb                                           (22) 

33333 cxayb                                            (23) 

Here LCM of the coefficients of 321 ,, xxx  is L. Hence system is equivalent to  

,333332222211111 CLyLbCLyLbCLyLbLx   where .332211 LaLaLaL      (24) 

First solve 22222111111 CLyLbCLyLbN   so that ,min11 NMpN  M is the LCM of 11Lb and 

.22 Lb  

Now consider .33333min1 CLyLbNMpN  This implies LxN min which gives .minx  Other values 

min3min2min1 ,, yyy are obtained from (24).  

Second Method 

Eq. (21) implies  

xpbx  1                                             (25) 

Substituting this in (22) gives  

pqbp  2                                               (26) 

Now substituting (26) in (25) we get equation in x,q. Substituting the values of x of this equation in (23) we get 

another equation in .,3 qy  This implies  

'

3 qrbq                                                    (27) 

Hence from (23) and (27) we obtain x and thereby .minx  
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5.2. Part II.   

Sum of the dividends, .321 aaaa   

Sum of the remainders, .321 cccc   

Suppose .321 bbbb  Adding (21), (22) and (23), caxby  which gives minxx  and .minyy  Now 

substituting x in the above equations we obtain .,, 321 yyy  

Third Method (Nārāyaṇa)[PSb] 

If ,.....2211 rxarxarxaN nn  then rN   with LCM of naaaa ,.....,,, 221 as additive. 

VI. MODERN DEVELOPMENT AND APPLICATIONS 

In the nineteenth and twentieth century‟s there have been considerable attentions to ancient Indian mathematics with 

a point of view of translation from Sanskrit texts, mathematical interpretation and formulation and comparison with 

other counter parts. However, study of computational efficiencies of algorithms as of today was lacking, ignored or 

forgotten. In concern of Āryabhaṭa I‟s algorithm of linear indeterminate equation requires approximately 

N2log35 operations of addition, multiplication and division where N is the order of moduli. In Chinese 

remainder and Garner‟s algorithms complexities involved are of the same order or module or more. The two 

algorithms are of immense interest as these are applied to solve system of congruence‟s concerned with theory of 

coding, cryptography, signal processing, computer design. These are used to find modular inverses ba mod1
 and  

.mod1 ab
 

Rao and Yang [R-Y] applied improved ĀryabhaṭaI‟s algorithm (IAA) for caxby  and extended tot moduli and 

named it as Āryabhaṭa remainder theorem (ART). This paper also contains extended Euclidean algorithm (EEA) and 

Chinese remainder theorem (CRT). CRT has further been compared with Garners algorithm. Later on ART was 

extended by Chang, Yeh and Yang [C-Y-Y] and Liu, Chang and Chang [L-C-C] to t moduli which led to 

generalized Āryabhaṭaremainder theorem (GART). Liu and Chang [L-C] applied GART to describe new data based 

encryption scheme whereby entire content of a record (confidential data) is converted into cipher text. Only 

authorized users can then use their decryption key to recover the cipher text to original field values of the record by 

GART.Priyanka et al.[P-N-K-R-C]applied CRT and ART based water making scheme in discrete cosine transform 

domain while CRT based scheme is concluded to be more resistant to different types of attacks and improved 

security feature.  ART based algorithm is applicable to any kind of moduli and computation is cost effective than 

CRT based algorithm. Koo, Change and Yu [K-C-Y] applied ART to dynamic multicast management system.  
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