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Abstract: The article deals with the problem of constructing solution of the Darboux problem for telegraph 

equation for the case with deviation from the characteristic. In this paper preliminarily is constructed Riemann-

Hadamard function and uniqueness theorem is established for Darboux problem. Then using the function of 

Riemann-Hadamard was constructed a solution of the Darboux problem explicitly. 
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I. INTRODUCTION AND PRELIMINARY 

Consider a problem of the Darboux type for the telegrath equation  

0,==0 cvvvvL yyxx                                                         (1) 

where c  is an arbitrary complex number in the domain D  bounded by the characteristic CB ( 1=yx ) of equation 

(1), line AC ( 0=ykx  ), and by the segment AB of the axis y = 0. 

 Problem D . In the domain D  find a function ),( yxv  which satisfies the conditions:  
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;),(0,),( DyxyxLv                  (3) 

1;<<0),(=,0)( xxxv                  (4) 

,
1

1
<<0),(=),(

k
xxkxxv


                 (5) 

where )(x  and )(x  are given sufficiently smooth functions.  

Definition. We call a function ),( yxv quazi-regular solution of  (1) if the following hold 

 ),( yxv satisfies (2); 

 we can to applicate Green’s theorem to the integrals 

vdxdyLvvdxdyLvvdxdyvL y

D

x

DD

000 ,,  ; 

 the boundary integrals which arise exist in the sense that: the limits taken over corresponding interior curves 

exist as these interior curves approach the boundary. 

II. THEOREM OF UNIQUENESS 

Assume 21, vv  : two solutions of Problem D  for equation (1) and boundary conditons. Then take 21 vvv  . In 

this case function ),( yxv  in D  satisfying equation (1) and following boundary conditions  
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Therefore for proof uniqueness solution Problem D  it is enough to show that 0v  in D . 

Theorem 1. If ),( yxv  − quazi-regular solution of (1) in D  and constant 0>c ,  0=
1}}0{{  Dy

v ,   then 

0),( yxv  in D . 

Proof. Consider ),( yxvv    be a quazi-regular of  (1) defined in D . Besides consider the integral 

dxdycvvvavbv

D

yyxxyx  ))((2  

where ba,  sufficiently smooth functions of  ),( yx . 

By virtue of  (1) this integral vanishes. The functions ba, are chosen in in such a way that, after a transformation of 

the integral by Green's formula, one obtains a positive (or non-negative) definite expression which vanishes only if  

0v  in D . 

Consider identities 
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Besides employ Green's theorem: 
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y
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Then employing above identities and applying Greene theorem we get: 

  dxdyvavbvbvvavavbJ yxyxyxxxyxx
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Finally we must choose: "nice functions" ),( yxaa  , ),( yxbb  ,   in  D  so that all conditions hold. If this occurs 

then uniqueness follows immediately. 
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Choose kba  , cb  . Obviously 0.=I  From 0=),( yxv  on  1}0{ y  and  the fact that  

)(=),(= 21  ondxdyonkdxdy   

we get  

kdxdy    0v  0 dxvdyv xy  
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III. CONSTRUCTION FUNCTION RIEMANN-HADAMARD 

On the plane ),( yx  we pass to the characteristic coordinates yx= , yx=  . Then equation (1) takes the form  

0=
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= u
c
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where  
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and the domain D  is mapped to the domain  
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and, respectively, Problem D  is posed as follows: 

 Problem D . In the domain   find a function ),( yxv  which satisfies the conditions  

    ;)=()(),( 1  CuCCu   

 ,),(0,),(  Lu  
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 u  

 1;0),(=),(  u  

 (0).=(0)   

It is well known that the Riemann-–Hadamard function plays an important role in the study of problem D ; this 

function was defined and constructed in [1-6] for some special cases of Eq.(1).In this section, we present an in a 

sense modified (as compared with the approaches used in the above-mentioned papers) approach to defining the 

Riemann-–Hadamard function of problem D  for Eq. (1) in case if boundary values is defined on non-characteristic.  

Let domain   is divided into following subdomains  
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In what follows, we assume that function is known as the Riemann–Hadamard function ),;,( 00 R  satisfies 

conditions  
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Then the function of the Riemann-Hadamard is determined by the recurrent formulas as follows  
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where )(0 J  is Bessel function of zero order.  

IV. CONSTRUCTION SOLUTION OF DARBOUX PROBLEM 

One can readily see that  

   
 RuuRRuuRLuRLRu 
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=                                                                                                     (6) 

 By using relation (6), where u  is a regular solution of Eq. (1) in the domain   and R  is function of Riemann-

Hadamard, and by applying the Green formula to the above-mentioned subdomains k , k , k  of the domain  , 

one can readily justify the relations  
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Calculating the integrals AECADCED IIII ,,, , one obtains:  
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 Again, on AE ,  dd = . Hence  



American Research Journal of Mathematics, Volume 1, Issue 3, June 2015 

ISSN 2378-704X 

www.arjonline.org                                                                                                                                       14 

        







dRRudRRuI AE )()(==
11

0

0

0

0

 

     =)()()()(
1212

0

0
22

0

01=































 













dRRudRRu
nn

n

nn

n

n

 

  
 
  





  dtt

tt

ttcJ
A )(

))((
=

1

0








 

  
 

  









 






 







d

cJ

A
nnn

nnn

n

n

)(

)(

00
2

001

0

0

00
2

1=

 

  
 

  









d

cJ

A
nnn

nnn

n

n

)(

)(

00
2

001

0

0

0
2

0
1= 






 






  

Therefore, one can readily show that the solution of the problem D  can be represented at the point ),(   in the 

form  
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Theorem 2. 1If functions   












1
0,1C , 1> ,    0,12C  and 0c  there exist a uniqueness solution to 

the problem D  of the form (7). 

V. CONCLUSIONS 

In this article, we discussed a little-known method of constructing the Riemann-Hadamard function for telegraph 

equation for the case with deviation from the characteristic. This result is a new study on the issue. 
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