Semi-Compatible and Weakly Compatible Self Maps in an Intuitionistic Fuzzy Metric Space

Harpreet Kaur¹, Neha Ishesh Thakur², Saurabh Manro∗³

¹,²Department of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
³School of Mathematics and Computer Applications, Thapar University, Patiala, Punjab, India

Abstract: The present paper is aimed to obtain a common fixed point theorem in intuitionistic fuzzy metric spaces under using the ideas of weak compatibility and semi compatibility for six self mappings. The results presented in this paper extended and generalized various known fixed point theorems in the literature in the setting of fuzzy and intuitionistic fuzzy metric spaces. As a consequence, the main results in this paper extend and unify many results in the topic of fixed points such as C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces (Chaos Solitons & Fractals, 29(5)(2006), 1073-1078). Also, some corollaries of the main results are given.

Keywords: Common fixed point, Intuitionistic fuzzy metric space, Semi-compatible maps, Weak-compatible maps.

I. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [1] in 1965. Kraniotis and Michalek [2], George and Veeramani [3] modified the notion of fuzzy metric with the help of continuous t-norms. In 2004, Park [4] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm and continuous t-conorm as a generalization of GV-fuzzy metric space. Alaca et al. [5], in 2006, redefined the notion of intuitionistic fuzzy metric space as a generalization of KM-fuzzy metric space. Turkoglu et al. [6] gave generalization of Jungck’s common fixed point theorem [7] in intuitionistic fuzzy metric spaces. Recently, Singh and Chouhan [8] introduced the concept of compatible maps in fuzzy metric space and established a fixed point theorem for four self-mappings. In this paper, we obtain a common fixed point theorem in intuitionistic fuzzy metric spaces using the concept of weak compatibility and semi compatibility for six self mappings. The results presented in this paper extended and generalized various known fixed point theorems in the literature in the setting of fuzzy and intuitionistic fuzzy metric spaces such as C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces (Chaos Solitons & Fractals, 29(5)(2006), 1073-1078). Also, some corollaries of the main results are given.

II. PRELIMINARIES AND DEFINITIONS

Definition 2.1. [9]: A binary operation * : [0,1] × [0,1] → [0,1] is said to be a continuous t-norm if * satisfies the following conditions: for all \ a, b, c, d \ ∈ [0,1],

(i) \ * \ is commutative and associative;
(ii) \ a * 1 = a ;
(iii) \ a * b ≤ c * d \ whenever \ a ≤ c, b ≤ d ;
(iv) \ * \ is continuous.

Definition 2.2. [9]: A binary operation \ ˙ : [0,1] × [0,1] → [0,1] \ is called a continuous t-conorm if \ ˙ \ satisfies the following conditions: for all \ a, b, c, d \ ∈ [0,1],

(i) \ ˙ \ is commutative and associative;
(ii) \ ˙ \ is continuous;
(iii) \ a ˙ 0 = a ;
(iv) \ a ˙ b ≤ c ˙ d \ when ever \ a ≤ c and \ b ≤ d.

*Corresponding Author: sauravmanro@hotmail.com
Definition 2.3.[5]: A 5-tuple \((X, M, N, *, \Diamond)\) is said to be an intuitionistic fuzzy metric space if \(X\) is a non-empty set, \(\ast\) is a continuous \(t\)-norm, \(\Diamond\) is a continuous \(t\)-conorm and \(M, N\) are fuzzy sets on \(X^2 \times [0, \infty)\) satisfying the following conditions: for all \(x, y, z \in X\) and \(s, t > 0\),

(i) \(M(x, y, t) + N(x, y, t) \leq 1\);

(ii) \(M(x, y, 0) = 0\);

(iii) \(M(x, y, t) = 1\) if and only if \(x = y\);

(iv) \(M(x, y, t) = M(y, x, t)\);

(v) \(M(x, y, t) \ast M(y, z, s) \leq M(x, z, t + s)\);

(vi) \(M(x, y, \bullet) : [0, \infty) \rightarrow [0, 1]\) is left continuous;

(vii) \(\lim_{t \rightarrow \infty} M(x, y, t) = 1\);

(viii) \(N(x, y, 0) = 1\);

(ix) \(N(x, y, t) = 0\) if and only if \(x = y\);

(x) \(N(x, y, t) = N(y, x, t)\);

(xi) \(N(x, y, t) \ast N(y, z, s) \geq N(x, z, t + s)\);

(xii) \(N(x, y, \bullet) : [0, \infty) \rightarrow [0, 1]\) is right continuous;

(xiii) \(\lim_{t \rightarrow \infty} N(x, y, t) = 0\).

Then \((M, N)\) is called an intuitionistic fuzzy metric on \(X\). The functions \(M(x, y, t)\) and \(N(x, y, t)\) denote the degree of nearness and the degree of non-nearness between \(x\) and \(y\) w.r.t. \(t\), respectively.

Definition 2.4.[5]: Let \((X, M, N, *, \Diamond)\) be an intuitionistic fuzzy metric space. Then a sequence \(\{x_n\}\) in \(X\) is said to be:

(a) Cauchy sequence if for all \(t > 0\) and \(p > 0\),
\[
\lim_{n \rightarrow \infty} M(x_{n+p}, x_n, t) = 1 \quad \text{and} \quad \lim_{n \rightarrow \infty} N(x_{n+p}, x_n, t) = 0.
\]

(b) convergent to a point \(x \in X\) if for all \(t > 0\),
\[
\lim_{n \rightarrow \infty} M(x_n, x, t) = 1 \quad \text{and} \quad \lim_{n \rightarrow \infty} N(x_n, x, t) = 0.
\]

Remark 2.1.[5]: Since \(*\) and \(\Diamond\) are continuous \(t\)-norm and \(t\)-conorms, the limit determined from (vii) and (xiii) is unique.

Definition 2.5.[5]: An intuitionistic fuzzy metric space \((X, M, N, *, \Diamond)\) is said to be complete if and only if every Cauchy sequence in \(X\) is convergent.

Example 2.1.[6]: Let \(X = [0, 1]\) with the usual metric, \(*\) be the continuous \(t\)-norm and \(\Diamond\) be the continuous \(t\)-conorm defined by \(a \ast b = ab\) and \(a \Diamond b = \max\{a, b\}\) respectively, for all \(a, b \in [0, 1]\). For each \(t \in (0, \infty)\) and \(x, y \in X\), define \((M, N)\) by
\[
M(x, y, t) = \begin{cases}
\frac{t}{t + |x - y|}, & t > 0 \\
0, & t = 0
\end{cases}
\]
\[
N(x, y, t) = \begin{cases}
\frac{|x - y|}{t + |x - y|}, & t > 0 \\
1, & t = 0
\end{cases}
\]
Clearly, \((X, M, N, *, \emptyset)\) is a complete intuitionistic fuzzy metric space.

Turagom et al. [6] extended the notion of compatible mappings to intuitionistic fuzzy metric spaces as follows:

Definition 2.6. A pair \((A, S)\) of self-mappings of an intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) is said to be *compatible* if

\[
\lim_{n \to \infty} M(A S x_n, S A x_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(A S x_n, S A x_n, t) = 0 \quad \text{for all} \quad t > 0,
\]

whenever \(\{x_n\}\) is a sequence in \(X\) such that \(\lim_{n \to \infty} A x_n = \lim_{n \to \infty} S x_n = z\) for some \(z \in X\).

Definition 2.7. A pair \((A, S)\) of self-mappings of an intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) is said to be *semi-compatible* if

\[
\lim_{n \to \infty} M(A S x_n, S z, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(A S x_n, S z, t) = 0 \quad \text{for all} \quad t > 0,
\]

whenever \(\{x_n\}\) is a sequence in \(X\) such that \(\lim_{n \to \infty} A x_n = \lim_{n \to \infty} S x_n = z\) for some \(z \in X\).

Definition 2.8. A pair \((A, S)\) of self-mappings of a metric space \((X, d)\) is said to be *weakly compatible* if the mappings commute at all of their coincidence points, i.e., \(A x = S x\) for some \(x \in X\) implies \(A S x = S A x\).

The proofs of our main results are based upon the following lemmas:

Lemma 2.1. Let \((X, M, N, *, \emptyset)\) be an intuitionistic fuzzy metric space and \(\{y_n\}\) be a sequence in \(X\). If there exists a real number \(k \in (0,1)\) such that

\[
M(y_n, y_{n+1}, t) \geq M(y_{n-1}, y_n, t) \quad \text{and} \quad N(y_n, y_{n+1}, t) \leq N(y_{n-1}, y_n, t),
\]

for all \(t > 0, \ n = 0, 1, 2, \ldots\), then \(\{y_n\}\) is a Cauchy sequence in \(X\).

Lemma 2.2. Let \((X, M, N, *, \emptyset)\) be an intuitionistic fuzzy metric space. If there exists a real number \(k \in (0,1)\) such that

\[
M(x, y, t) \geq M(x, y, t) \quad \text{and} \quad N(x, y, t) \leq N(x, y, t) \quad \text{for all} \quad x, y \in X, \ t > 0,
\]

then \(x = y\).

Lemma 3. In intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\), \(M(x, y, .)\) is non-decreasing and \(N(x, y, .)\) is non-increasing for all \(x, y \in X\).

Lemma 4. Let \(A\) and \(B\) be self-mappings from an intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) such that \(B\) is continuous. Then \((A, B)\) is semi-compatible if and only if \((A, B)\) is compatible.

III. MAIN RESULTS

In this paper, we prove following common fixed point theorem for six self-mappings in intuitionistic fuzzy metric spaces.

Theorem 3. Let \(A, B, S, T, P\) and \(Q\) be self-mappings on a complete intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) satisfying

\[
P(X) \subseteq ST(X), \ Q(X) \subseteq AB(X), \hspace{1cm} (3.1)
\]

\[
AB = BA, \ ST = TS, \ PB = BP \quad \text{and} \quad QT = TQ, \hspace{1cm} (3.2)
\]

either \(P\) or \(AB\) is continuous, \hspace{1cm} (3.3)

\[
(P, AB) \text{ is semi-compatible and } (Q, ST) \text{ is weak-compatible}, \hspace{1cm} (3.4)
\]

for all \(x, y \in X\) and \(t > 0\)

\[
M(Px, Qy, t) \geq r \left(\min\{M(STy, Py, t), M(ABx, Qy, 2t), M(ABx, STy, t)\} \right) \hspace{1cm} (3.5)
\]

and

\[
N(Px, Qy, t) \leq r'(\max\{N(STy, Py, t), N(ABx, Qy, 2t), N(ABx, STy, t)\})
\]
where \(r: [0,1] \to [0,1] \) is a continuous increasing function, such that \(r(t) > t \) for each \(0 < t < 1 \) and \(r': [0,1] \to [0,1] \) is a continuous decreasing function, such that \(r'(t) < t \) for each \(0 < t < 1 \).

Then \(A, B, S, T, P \) and \(Q \) have a unique common fixed point in \(X \).

Proof: Suppose \(x_0 \in X \), then from (3.1) there exists \(x_1, x_2 \in X \) such that \(Px_0 = STx_1 \) and \(Qx_1 = ABx_2 \). In general, we can construct sequences \(\{y_n\} \) and \(\{x_n\} \) in \(X \) such that

\[
y_{2n} = Px_{2n} = STx_{2n+1} \quad \text{and} \quad y_{2n+1} = Qx_{2n+1} = ABx_{2n+2} \quad \text{for} \quad n = 0, 1, 2, \ldots.
\]

Put \(x = x_{2n}, y = x_{2n+1} \) in (3.5), we get

\[
M(Px_{2n}, Qx_{2n+1}, l) \geq r(\min\{M(STx_{2n+1}, Px_{2n}, 0), M(ABx_{2n}, Qx_{2n+1}, 2l), M(ABx_{2n}, STx_{2n+1}, l)\})
\]

and

\[
N(Px_{2n}, Qx_{2n+1}, l) \leq r'(\max\{N(STx_{2n+1}, Px_{2n}, 0), N(ABx_{2n}, Qx_{2n+1}, 2l), N(ABx_{2n}, STx_{2n+1}, l)\}).
\]

This implies that

\[
M(y_{2n}, y_{2n+1}, t) \geq r(\min\{M(y_{2n}, y_{2n+1}, t), M(y_{2n-1}, y_{2n+1}, 2t), M(y_{2n-1}, y_{2n}, t)\})
\]

\[
\geq r(\min\{1, M(y_{2n-1}, y_{2n+1}, t), M(y_{2n-1}, y_{2n}, t)\})
\]

and

\[
N(y_{2n}, y_{2n+1}, t) \leq r'(\max\{N(y_{2n}, y_{2n}, t), N(y_{2n-1}, y_{2n+1}, 2t), N(y_{2n-1}, y_{2n}, t)\})
\]

\[
\leq r'(\max\{0, N(y_{2n-1}, y_{2n}, t), N(y_{2n}, y_{2n+1}, t), N(y_{2n-1}, y_{2n}, t)\}).
\]

If \(\min\{M(y_{2n-1}, y_{2n}, t), M(y_{2n}, y_{2n+1}, t)\} = M(y_{2n}, y_{2n+1}, t) \)

and

\[
\max\{N(y_{2n-1}, y_{2n}, t), N(y_{2n}, y_{2n+1}, t)\} = N(y_{2n}, y_{2n+1}, t)
\]

then, a contradiction.

So,

\[
M(y_{2n}, y_{2n+1}, t) \geq r(M(y_{2n-1}, y_{2n}, t)) > M(y_{2n-1}, y_{2n}, t)
\]

and

\[
N(y_{2n}, y_{2n+1}, t) \leq r'(N(y_{2n-1}, y_{2n}, t)) < N(y_{2n-1}, y_{2n}, t).
\]

Similarly,

\[
M(y_{2n+1}, y_{2n+2}, t) > M(y_{2n}, y_{2n+1}, t)
\]

and

\[
N(y_{2n+1}, y_{2n+2}, t) < N(y_{2n}, y_{2n+1}, t).
\]

In general,

\[
M(y_{n+1}, y_n, t) \geq r(M(y_n, y_{n-1}, t)) \geq M(y_n, y_{n-1}, t)
\]

and

\[
N(y_{n+1}, y_n, t) \leq r'(N(y_n, y_{n-1}, t)) < N(y_n, y_{n-1}, t).
\]

Thus \(\{M(y_{n+1}, y_n, t)\} \) and \(\{N(y_{n+1}, y_n, t)\} \) are the increasing and decreasing sequences of positive real numbers in \([0, 1]\) and tends to a limit \(l \leq 1 \) and \(e \geq 0 \) respectively,

If \(l < 1 \), then \(\lim_{n \to \infty} M(y_{n+1}, y_n, t) = r'(t) > l \)

and

if \(e > 0 \), then \(\lim_{n \to \infty} N(y_{n+1}, y_n, t) = r'(t) < e \),

which is a contradiction.

Therefore, \(l = 1 \) and \(e = 0 \).

Now for any positive integer \(p \),

\[
M(y_n, y_{n+p}, t) \geq \min\{M(y_n, y_{n+1}, t/p), M(y_{n+1}, y_{n+2}, t/p), \ldots, M(y_{n+p-1}, y_{n+p}, t/p)\}
\]
Therefore, which is a contradiction and we get
\[\max\{N(y_n, y_{n+1}, t/p) \} \leq r.\]
Taking limit \(n \to \infty \), we get
\[\lim_{n \to \infty} M(y_n, y_{n+1}, t/p) = 1.\]
and
\[\lim_{n \to \infty} N(y_n, y_{n+1}, t/p) = 0.\]
So, \(\lim_{n \to \infty} M(y_n, y_{n+1}, t/p) = 1 \) and \(\lim_{n \to \infty} N(y_n, y_{n+1}, t/p) = 0.\)
Thus \(\{y_n\} \) is a Cauchy sequence in \(X \). By the completeness of \(X \), \(\{y_n\} \) converges to \(z \in X \). Hence
\[P_{2n+1} \to STx, Q_{2n+1} \to ABx_{2n+2} \to \kappa. \]

Firstly, suppose that \(P \) is continuous. Since \((P, AB) \) is semi-compatible, we get
\[PABx_{2n+1} \to Pz \quad \text{and} \quad PABx_{2n+2} \to ABz. \]
Since the limit in intuitionistic fuzzy metric space is unique, we get
\[Pz = ABz. \]

We prove that \(Pz = z \). Put \(x = y = x_{2n+1} \) in (3.5) and let \(Pz \neq z \), then
\[M(Pz, Q_{2n+1}, t) \geq r \left(\min\{M(STx_{2n+1}, Pz, t), M(ABz, Q_{2n+1}, 2t), M(ABz, STx_{2n+1}, t)\} \right) \]
and
\[N(Pz, Q_{2n+1}, t) \leq r' \left(\max\{N(STx_{2n+1}, Pz, t), N(ABz, Q_{2n+1}, 2t), N(ABz, STx_{2n+1}, t)\} \right). \]
Letting \(n \to \infty \) and using (3.6) and (3.8), we get
\[M(Pz, z, t) \geq r \left(\min\{M(z, Pz, t), M(Pz, z, 2t), M(Pz, z, t)\} \right) \]
\[\geq r \left(M(Pz, z, t) \right) > M(Pz, z, t). \]
and
\[N(Pz, z, t) \leq r' \left(\max\{N(z, Pz, t), N(Pz, z, 2t), N(Pz, z, t)\} \right) \]
\[\leq r' \left(N(Pz, z, t) \right) < N(Pz, z, t) \]
which is a contradiction and hence \(z = Pz = ABz \).

Put \(x = Bz \) and \(y = x_{2n+1} \) in (3.5) and as \(BP = PB, AB = BA \) so we have
\[M(PBz, Q_{2n+1}, t) \geq r \left(\min\{M(STx_{2n+1}, PBz, t), M(ABBz, Q_{2n+1}, 2t), M(ABBz, STx_{2n+1}, t)\} \right) \]
and
\[N(PBz, Q_{2n+1}, t) \leq r' \left(\max\{N(STx_{2n+1}, PBz, t), N(ABBz, Q_{2n+1}, 2t), N(ABBz, STx_{2n+1}, t)\} \right). \]
Letting \(n \to \infty \) and using (3.6), we get
\[M(Bz, z, t) \geq r \left(\min\{M(z, Bz, t), M(Bz, z, 2t), M(Bz, z, t)\} \right) \]
\[\geq r \left(M(Bz, z, t) \right) > M(Bz, z, t) \]
and
\[N(Bz, z, t) \leq r' \left(\max\{N(z, Bz, t), N(Bz, z, 2t), N(Bz, z, t)\} \right) \]
\[\leq r' \left(N(Bz, z, t) \right) < N(Bz, z, t), \]
which is a contradiction and we get \(Bz = z \) and so \(z = ABz = Az \).

Therefore \(Pz = Az = Bz = z \).

Since \(P(X) \subset ST(X) \) there exists \(u \in X \) such that \(z = Pu = SUz \).
Put \(x = x_{2n+1}, y = u \) in equation (3.5), we get
\[M(Px_{2n+1} Qu, t) \geq r \left(\min\{M(STu, Px_{2n+1} t), M(ABx_{2n+1} Qu, 2t), M(ABx_{2n+1} STu, t)\} \right) \]
Since (3.9) and (3.10), we get
\[r(M(z, Qu, 2t)) > M(z, Qu, 2t) \]
and
\[N(z, Qu) \leq r'(\max \{ N(STu, Px_{2n}, t), N(ABx_{2n}, Qu, 2t), N(ABx_{2n}, STu, t) \}) \]

Letting \(n \to \infty \) and using (3.6), we get
\[M(z, Qu, t) \geq r(\min \{ M(z, z, t), M(z, Qu, 2t), M(z, z, t) \}) \]
\[\geq r(M(z, Qu, 2t)) > M(z, Qu, 2t) \]
and
\[N(z, Qu) \leq r'(\max \{ N(z, z, t), N(z, Qu, 2t), N(z, z, t) \}) \]
\[\leq r'(N(z, Qu, 2t)) < N(z, Qu, 2t), \]
which is a contradiction by Lemma 2.2 and we get, \(Qu = z = STu \).

Since \((Q, ST)\) is weak- compatible, we have \(STQu = QSTu \) i.e. \(STz = Qz \).

Put \(x = x_{2n}, y = z \) in (3.5), we get
\[M(Px_{2n}, Qu) \geq r(\min \{ M(STz, Px_{2n}, t), M(ABx_{2n}, Qu, 2t), M(ABx_{2n}, STz, t) \}) \]
and
\[N(Px_{2n}, Qu) \leq r'(\max \{ N(STz, Px_{2n}, t), N(ABx_{2n}, Qu, 2t), N(ABx_{2n}, STz, t) \}) \]

Letting \(n \to \infty \) and using (3.6), we get
\[M(z, Qz, t) \geq r(\min \{ M(Qz, z, t), M(z, Qz, 2t), M(z, Qz, t) \}) \]
\[\geq r(M(z, Qz, t)) > M(z, Qz, t) \]
and
\[N(z, Qz, t) \leq r'(\max \{ N(Qz, z, t), N(z, Qz, 2t), N(z, Qz, t) \}) \]
\[\leq r'(N(z, Qz, t)) < N(z, Qz, t), \]
which is a contradiction and we get \(Qz = z \) and so \(STz = Qz = z \).

Put \(x = x_{2n} \) and \(y = Tz \) in (3.5), we get
\[M(Px_{2n}, QTz) \geq r(\min \{ M(STTz, Px_{2n}, t), M(ABx_{2n}, QTz, 2t), M(ABx_{2n}, STTz, t) \}) \]
and
\[N(Px_{2n}, QTz) \leq r'(\max \{ N(STTz, Px_{2n}, t), N(ABx_{2n}, QTz, 2t), N(ABx_{2n}, STTz, t) \}) \]

As \(QT = TQ \) and \(ST = TS \), we have \(QTz = TQz = Tz \) and \(ST(Tz) = T(STz) = Tz \).

Letting \(n \to \infty \), we get
\[M(z, Tz, t) \geq r(\min \{ M(Tz, z, t), M(z, Tz, 2t), M(z, Tz, t) \}) \]
\[\geq r(M(z, Tz, t)) > M(z, Tz, t) \]
and
\[N(z, Tz, t) \leq r'(\max \{ N(Tz, z, t), N(z, Tz, 2t), N(z, Tz, t) \}) \]
\[\leq r'(N(z, Tz, t)) < N(z, Tz, t) \]
which is a contradiction and we get \(Tz = z \).

Now \(STz = Tz = z \) implies \(S = z \).

By (3.10), we have \(Sz = Tz = Qz = z \).

Combining (3.9) and (3.10), we get \(Az = Bz = Pz = Qz = Sz = Tz = z \).

Hence, \(z \) is a common fixed point of \(A, B, P, Q, S \) and \(T \).

Secondly, suppose that \(AB \) is continuous.

Since \(AB \) is continuous and \((P, AB)\) is semi-compatible, we get
\[ABP_{x_{2n}} \to ABz, (AB)^{2}x_{2n} \to ABz, PABx_{2n} \to ABz. \]
(3.11)

Thus \(\lim_{n \to \infty} ABP_{x_{2n}} = \lim_{n \to \infty} PABx_{2n} = ABz. \)

Put \(x = ABx_{2n}, y = x_{2n+1} \) in (3.5) and assuming \(ABz \neq z \), we get

\[M(PABx_{2n}, Qx_{2n+1}) \geq r(\min \{ M(STx_{2n+1}, PABx_{2n}), M((AB)^{2}x_{2n}, Qx_{2n+1}, 2t), M((AB)^{2}x_{2n}, STx_{2n+1}) \}) \]

and

\[N(PABx_{2n}, Qx_{2n+1}) \leq r'(\max \{ N(STx_{2n+1}, PABx_{2n}), N((AB)^{2}x_{2n}, Qx_{2n+1}, 2t), N((AB)^{2}x_{2n}, STx_{2n+1}) \}). \]

Letting \(n \to \infty \) and using (3.11), we get

\[M(ABz, z, t) \geq r(\min \{ M(z, ABz, t), M(ABz, z, 2t), M(ABz, z, t) \}) \]

\[\geq r(M(ABz, z, t)) > M(ABz, z, t) \]

and

\[N(ABz, z, t) \leq r'(\max \{ N(z, ABz, t), N(ABz, z, 2t), N(ABz, z, t) \}) \]

\[\leq r'(N(ABz, z, t)) < N(ABz, z, t), \]

which is a contradiction and we get \(ABz = z \).

Put \(x = z, y = x_{2n+1} \) in (3.5), we get

\[M(Pz, Qx_{2n+1}, t) \geq r(\min \{ M(STx_{2n+1}, Pz, t), M(ABz, Qx_{2n+1}, 2t), M(ABz, STx_{2n+1}, t) \}) \]

and

\[N(Pz, Qx_{2n+1}, t) \leq r'(\max \{ N(STx_{2n+1}, Pz, t), N(ABz, Qx_{2n+1}, 2t), N(ABz, STx_{2n+1}, t) \}). \]

Letting \(n \to \infty \) and using (3.6), we get

\[M(Pz, z, t) \geq r(\min \{ M(z, Pz, t), M(z, z, 2t), M(z, z, t) \}) \]

\[\geq r(M(z, Pz, t)) > M(Pz, z, t) \]

and

\[N(Pz, z, t) \leq r'(\max \{ N(z, Pz, t), N(z, z, 2t), N(z, z, t) \}) \]

\[\leq r'(N(z, Pz, t)) < N(Pz, z, t), \]

which gives \(Pz = z \). Hence, \(Pz = z = ABz \).

Thus \(ABz = z \) gives \(Az = z \) and so \(Az = Bz = Pz = z \).

That is, \(Az = Bz = Qz = Sz = Tz = z \).

Hence \(z \) is a common fixed point of \(A, B, P, Q, S \) and \(T \) in this case also.

Uniqueness: Let \(z_1 \) be another common fixed point of \(A, B, P, Q, S \) and \(T \).

Then \(Az_1 = Bz_1 = Pz_1 = Qz_1 = Sz_1 = Tz_1 = z_1 \), assuming \(z \neq z_1 \). Put \(x = z, y = z_1 \) in (3.5), we get

\[M(Pz, Qz_1, t) \geq r(\min \{ M(STz_1, Pz, t), M(ABz, Qz_1, 2t), M(ABz, STz_1, t) \}) \]

\[M(z, z_1, t) \geq r(\min \{ M(z, z_1, t), M(z, z_1, 2t), M(z, z_1, t) \}) \]

\[\geq r(M(z, z_1, t)) > M(z, z_1, t) \]

and

\[N(Pz, Qz_1, t) \leq r'(\max \{ N(STz_1, Pz, t), N(ABz, Qz_1, 2t), N(ABz, STz_1, t) \}) \]

\[N(z, z_1, t) \leq r'(\max \{ N(z, z_1, t), N(z, z_1, 2t), N(z, z_1, t) \}) \]

\[\leq r'(N(z, z_1, t)) < N(z, z_1, t) \]

which is a contradiction. Hence \(z = z_1 \) and so \(z \) is the unique common fixed point of \(A, B, P, Q, S \) and \(T \).
Corollary 3.1: Let A, S, P and Q be self-mappings on a complete intuitionistic fuzzy metric space $(X, M, N, *, ◊)$ satisfying:

$$P(X) \subseteq S(X), Q(X) \subseteq A(X),$$

either P or A is continuous, \hspace{1cm} (3.12)

(P, A) is semi-compatible and (Q, S) is weak-compatible, \hspace{1cm} (3.13)

for all $x, y \in X$ and $t > 0$

$$M(Px, Qy, t) \geq \min\{M(Sy, Py, t), M(Ax, Qy, 2t), M(Ax, Sy, t)\}$$

and

$$N(Px, Qy, t) \leq \max\{N(Sy, Py, t), N(Ax, Qy, 2t), N(Ax, Sy, t)\}.$$ \hspace{1cm} (3.14)

Then A, S, P and Q have a unique common fixed point in X.

Corollary 3.2: Let A, B, S, T, P and Q be self-mappings on a complete intuitionistic fuzzy metric space $(X, M, N, *, ◊)$ satisfying

$$P(X) \subseteq ST(X), Q(X) \subseteq AB(X),$$

$AB = BA$, $ST = TS$, $PB = BP$ and $QT = TQ$, \hspace{1cm} (3.16)

either P or AB is continuous, \hspace{1cm} (3.17)

(P, AB) is semi-compatible and (Q, ST) is weak-compatible, \hspace{1cm} (3.18)

for all $x, y \in X$ and $t > 0$

$$M(Px, Qy, t) \geq \min\{M(STy, Py, t), M(ABx, Qy, 2t), M(ABx, STy, t)\}$$

and

$$N(Px, Qy, t) \leq \max\{N(STy, Py, t), N(ABx, Qy, 2t), N(ABx, STy, t)\}.$$ \hspace{1cm} (3.19)

Then A, B, S, T, P and Q have a unique common fixed point in X.

IV. CONCLUSION

The present paper extended and generalized various known fixed point theorems in the literature in the setting of fuzzy and intuitionistic fuzzy metric spaces.

REFERENCES