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Abstract: In this paper we make a clear relationship between the automorphic representations and the 

quantization through the Geometric Langlands Correspondence. We observe that the discrete series representation 

are realized in the sum of eigenspaces of Cartan generator, and then present the automorphic representations in 

form of induced representations with inducing quantum bundle over a Riemann surface and then use the loop 

group representation construction to realize the automorphic representations. The Langlands picture of 

automorphic representations is precised by using the Poisson summation formula. 
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I. INTRODUCTION 

The representation theory of SL(2, ℝ) is well-known in the Bargman classification: every irreducible 

unitary/nonunitary representation is unitarily/nonunitarily equivalent to one of representions in the five series: 

 the principal continuous series representations (
s
,P

s
) 

 the discrete series representations (


k ,D
n

),nN,n0  

 the limits of discrete series representations (


0,D


), 

 the complementary series representations (
s
,C

s
),0<s<1 , 

 the trivial one dimensional representation 1, 

 the nonunitary finite dimensional representations V
k
. 

Looking at a Fuchsian discrete subgroup Γ of type I, i.e. 

Γ ⊆SL (2,ℤ), vol(Γ\ SL(2, ℝ)) < + ∞ 

One decomposes the cuspidal parabolic part 𝐿𝑐𝑢𝑠𝑝 (Γ\𝑆𝐿 2,ℝ )
2

 of L
2
(Γ\ SL(2,ℝ)), that is consisting of the so called 

automorphic representations in subspaces of automorphic forms, of which each irreducible component with 

multiplicity equal to the dimension of the space of modular forms on the upper Poincar´e half-plane. 

ℍ= {𝑧ℂ|(z)>0}. 

There are a lot of studies concerning the automorphic forms and automorphic representations. Most of them realize 

the representations as some induced ones. Therefore some clear geometric realization of these representations 

should present some interests.  

In this paper, we use the ideas of geometric quantization to realize the automorphic representations in form of some 

Fock representations of loop algebras, see Theorem 3.7, below. In order to do this, we first present the action of the 

group SL(2,ℝ)in the induced representation of discrete series as the action of some loop algebra/group in the 

heighest/lowest weight representations.  
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The representations are uniquely up to equivalence defined by the character, which are defined as some distribution 

function. Beside of the main goal we make also some clear presentation of automorphic representations in this 

context, see Theorems 3.2, 3.3. In the theorem 6.4 we expose the trace formula using both the spectral side and 

geometric side.  

The authors thank the referee for his careful reading, the helpful remarks and comments, improving the paper. 

II. ENDOSCOPY GROUPS FOR SL(2,ℝ) 

We introduce in this section the basic notions and notations concerning SL(2,ℝ) many of which are folklore or well-

known but we collect all together in order to fix a consistent system of our notations. 

The unimodular group G = SL(2,ℝ)is the matrix group 

 

The group has finite center ℤ/2ℤ. It complexified group 𝐺ℂ = SL(2,ℂ). The unique maximal compact subgroup K of 

G is 

 

The group is simple with the only nontrivial parabolic subgroup, which is minimal and therefore is a unique split 

Borel subgroup 

 

The Borel group B is decomposed into semidirect product of its unipotent radical N and a maximal split torus 

T≅ ℝ+
∗   and a compact subgroup M = {±1}. It is well-known the Cartan decomposition G = B ⋊ K = BK 

 

 

and it is easy to compute 

y= 
1

c
2

+d
2 

cos=y
1/2

d, or =arccos 
d

 c
2

+d
2

 

y
1/2

siny
1/2

xcos=b or x= 
(b+cy)

d , 

and the Langlands decomposition of the Borel subgroup B = MAN. The Lie algebra of G = SL(2,ℝ) is g = 𝓢𝒍(2,ℝ)=

 YXH ,,
ℝ

 

 where 

 

satisfying the Cartan commutation relations 
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[H, X] = 2X, [H, Y] = −2Y, [X, Y] = H. 

The Lie algebra of A is 𝛼 =  𝐻 ℝ, the Lie algebra of N is  𝑛 =  𝑋 ℝ The Lie algebra of B is 

 

𝑏 = 𝛼 ⊕ 𝑛 =  𝐻,  𝑋  ℝ 

The complex Cartan subalgebra of g is a complex subalgebra 

h = <H >C ⊂ 𝑔ℂ ,  

which is concided with it normalizer in gC. The corresponding subgroup of G such that its Lie algebra is a Cartan 

subalgebra, is called a Cartan subgroup. The root system of (𝑔, 𝑕) is of rank 1 and is 

= {𝛼}, 𝛼= (1,1)ℤ(1,1)ℝ(1,1). 

There is only one positive root α = (1, −1), which is simple. There is a compact Cartan group T = K = O(2) The 

coroot vector is Hα = (1, −1) and the split Cartan subgroup of B is H = ℤ/ 2 ℤ × ℝ+
∗ ≅ ℝ*

 

Definition 2.1. An endoscopy subgroup of G = SL(2,ℝ)is the connected component of identity in the centralizer of a 

regular semisimple element of G. 

Proposition 2.2. The only possible endoscopy subgroups of 𝐺 = SL(2, ℝ),  are itself or SO(2). 

Proof.  

The regular semisimple elements of SL(2, ℝ),  are of the form g = diag(λ1, λ2), λ1λ2 = 1. If 
1


2
, the centralizer of 

g is the center C (G) = {±1} of the group SL(2, ℝ), If λ1 = λ2 and they are real, the centralizer of g is the group 

SL(2, ℝ), itself. If they are complex and their arguments are opposite, we have g=diag(e
i

,e
i

). In this case the 

connected component of identity of the centralizer is SO(2). The endoscopy groups SL(2, ℝ), itself or the center 

{±1} are trivial and the only nontrivial endoscopy group is SO(2). 

III. AUTOMORPHIC REPRESENTATIONS 

In this section we make clear the construction of automorphic representations.The following lemma is well-known. 

Lemma 3.1. There is a one-to-one correspondence between any irreducible 2n −1 dimensional representations of 

SO(3) and the n dimensional representations of SO(2). 

Proof: There is a short exact sequence 

1                {± I}                SU (2)                 SO (3)             1                                                                                    (3.1) 

The characters of the 2n − 1, n = 1, 2 . . . dimensional representation of SO(3) is 


2n1

(k())= 
sin(2n1)

sin
                                                                                                                                           (3.2) 

where 

 

It is well-known the Iwasawa decomposition ANK: every element  𝑔 =  
𝑎 𝑏
𝑐 𝑑

   has a unique decomposition of form 

                                                                                 (3.3) 

of SL2( ℝ), where 

                                                                                (3.4) 
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is the unipotent radical of the Borel subgroup, 

                                                                                                                                              (3.5) 

is the split torus in the Cartan subgroup, and 

                              (3.6) 

is the maximal compact subgroup. 

To each modular form f ∈ Sk(Γ) of weight k on the Poincar´e plane ℍ  = SL(2, ℝ) /SO(2), we associate the 

automorphic form 𝜙𝑓  ∈ Ak(SL(2, ℝ)) 

                                         (3.7)   

Where x, y, θ are from the Iwasawa decomposition (3.3). 

The discrete series representations are realized on the function on  𝐿2 ℍ, 𝜇𝑘 , 𝜇𝑘 =  𝒴
𝐾 

𝑑𝑥𝑑𝑦

𝒴2   
of weight k modular 

form by the formula 

                                                                                                                    (3.8) 

Denote by Dk the discrete series representation of weight k. The cuspidal automorphic representations are realized in 

the space L
2
 cusp(Γ\ SL(2, R)) of automorphicforms 

Theorem 3.2. The set of interwining SL(2, R) homomorphisms from the set of discrete series representations to the 

set L
2

cusp(Γ\ SL(2, R)) of the automorphic representations of SL(2, R) is equal to the set Sk(Γ) of modular forms, i.e. 

                                                                                   (3.9) 

Proof: The theorem is well-known in literature, see for example A. Borel [B]. Starting from some intertwining 

operator A∈ HomSL (2,ℝ) (Dk, L
2
cusp(Γ\ SL(2, ℝ))we may construct the L-series which is an element in Sk(Γ); and 

conversely, starting from some a modular form f ∈ Sk(Γ) we construct the corresponding L-series Lf. 

There exists a unique interwining operator A such that the L-series of which is equal to Lf. 

3.1. Geometric Langlands Correspondence  

The general Geometric Langlands Conjecture was stated by V. Drinfel’d and was then proven by E. Frenkel, D. 

Gaits-gory and Vilonen [FGV] and became the Geometric Langlands Correspondence (GLC). We will start to 

specify the general GLC in our particular case of group SL2(R). 

Theorem 3.3 (Geometric Langlands Correspondence). There is a bijection 

[π1(Σ), SO(3)] ←→ A(SL(2, ℝ))                            (3.10) 

between the set of equivalence classes of representation of the fundamental group π1(Σ) of the Riemannian surfaceΣ 

= Γ\ SL(2, ℝ)SO(2) in SO(3) and the set A(SL(2, ℝ)of equivalence classes of automorphic representations of 

SL(2, ℝ) 

Proof: The theorem was proven in the general context of a reductive group in the works of [FGV]. The Geometric 

Langlands Correspondence is the one-to-one correspondence between the homotopy classes from the fundamental 

group π1(Σ) of the Riemanian surface Σ to the Langlands dual group 
L
G and the set of equivalent classes of 

automorphic representations of the reductive group G. The machinery is very complicated involving the theory of 

Langlands dual groups, theory of auto-morphic forms on real reductive groups. For the particular case of SL 2, ℝ  

many things are simplified, what we want to point out here  
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The main idea to prove the theorem is consisting of the following ingredients: 

(1) It is well-known that every element of SO(3) is conjugate with some element of the maximal torus subgroup 

SO(2). Therefore the set of homomorphism from π1(Σ) into SO(3) is the same as the set of character of the Borel 

subgroup (minimal parabolic subgroup) from which the discrete series rep-resentations are induced. 

Lemma 3.4. There is one-to-one correspondencee between the conguacy classes of SO(3) in itself and the inducing 

character for the discrete series representations. 

(2) Moreover, the Γ invariance condition is the same as the condition to be extended from the local character of 

some automorphic component. The following two lemmas are more or less known [?]. 

Lemma 3.5. Every representation of π1(Σ) in SO(3) is defined by a system of conjugacy classes in SO(3), one per 

generator of π1(Σ). 

Lemma 3.6. Every system of conjugacy classes in the previous lemma 3.5 defines a unique modular form on H and 

hence a unique automorphic representation of SL2(ℝ). 

3.2. Geometric Quantization  

The idea of realizing the automorphic representa-tions of reductive Lie groups was done in [D1]. In this section we 

show the concrete computation for the case of SL(2, ℝ) 

Theorem 3.7. The automorphic representations are obtained from the quantization procedure of fields based on 

geometric Langlands correspondence. 

Proof: The discrete series representations can be realized through the geometric quantization as follows. 

(1) The representation space of discrete series representation is consisting of square-intergrable holomorphic 

functions 

f(z)= 
n=0


 c

n
z
n

;     
n=0


 |c

n
|

2
<                                        (3.11) 

Lemma 3.8. The Hardy space of holomorphic quare-integrable functions can be realized as the expnential Fock 

space of the standard representation of SO(2) in ℂ. 

Indeed every module-square convergence series of type 3.12 can be ex- press as some element 

f(z)= 
n=0


 n!c

n
 
z
n

n!;     
n=0


 |c

n
|

2
<                                                                   (3.12) 

in the exponential vector space 

EXPC=


n=0 
C
n

n! ,    C
n

C                                                                     (3.13) 

(2) Let us now explain how can we obtain the representations as some results of geometric quantization procedure 

exposed in [D1]. The main idea of quantization of fields is the following: present the Lie algebra as some loop 

algebra over an appropriate Riemann surface by reduction, Kapustin-Witten and then combine the construction of 

the internal symmetry of by geometric quantization method with the construction of positive energy highest weight 

representation of loop algebra. Again in the paper, the general construction was explained, but we want to sepcify 

the deal in our concrete situation of sl2(ℝ). The Lie algebra sl2(ℝ) with 3 generators sl2(R) =  YXH ,,
ℝ

in the 

induced representations of discrete series act through the action of one-parameters subgroups. 

            (3.14) 
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Under the representation π ±
𝑛
 we have 




n(g
k

(t))=e
itU k                                      (3.15) 

and we have the relations 

iU 
3

=H =2z 


z
+(n+1),                                                    (3.16) 

iU 
1

=X Y =(1+z
2

) 


z
(n+1)z,  

iU 
2

=X +Y =(1z
2

) 


z
(n+1)z. 

In this representation, the action of the element 

= 
1
4 (U 

2
1U 

2
2U 

2
3)=                         (3.17) 

= 
1
4  ( )(X Y )

2
(X +Y )

2
(H )

2
= 

1
4(H 

2
+4X Y )= 

=(z z )
2

 


2

z z 
=y

2
 








 


2

x
2+ 


2

y
 

This action can be represented as the action of the loop algebra over the Riemann surface Σ with values in SO(2), the 

elements of the loop algebra are presented in form of some formal/conformal Laurent series with values in the 

corresponding Lie algebra of form of connection appeared in the construction of induced representations, i.e. 

T(z)= 
n=


 c

n
z
n

,c
n
so(2),z.                           (3.18) 

In our case the Lie algebra so(2) is one dimensional and we have all number coefficients cn, n ∈ ℤ. 

Lemma 3.9. The decompositon 3.13 of EXP ℂ presents the weight decomposition of sl2(ℝ) in which H keeps each 

component, X acting as creating operator and Y is acting as some annihilating operator. 

(3)The lowest weight representations of the loop algebras are realized through the lowest weight representations of 

the Virassoro algebra as follows. Let us consider the generators. 

L
n

= 



 z
n+1

T(z)dz                                                                                                                                                     (3.19) 

for any element 

T (.) : Σ → SO(2) 

from the loop algebra presentation are realized in the Fock space of the standard representation. These generators 

satisfy the Virasoro algebra relations. 

[L
m

,L
n

]=(nm)L
m+n

+
n,m

 
n(n

2
1)

12 L
0

,                                                                   (3.20) 
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where in an irreducible representation, Z = cL0= cI is the central charge element. 

The proof of Theorem 3.7 is therefore achieved. 

IV. ARTHUR-SELBERG TRACE FORMULA 

4.1. Trace Formula  

Let us review the trace formula due to Selberg and J. Arthur. Remind that by H = SL(2, ℝ)\ SO(2) denote the upper 

Poincar´e half-plane, 

ℍ = {z = x + iy ∈ℂ|ℑ𝓏 = y > 0}, 

Γ denote a Langlands type discrete subgroup of finite type with finite number of cusps κ1, . . . , κh. Let 

 

And 

Γi= {σ ∈ Γ|σκi= κi} ⊂ SL(2, ℤ) 

and σi ∈ SL(2, ℝ), i = 1, 𝑕      are such that σi Γi 𝜎𝑖
−1= Γ0. σiΓi𝜎𝑖= Γ0, ℌ= L

2
(Γ\G) denote the space of quare-integrable 

functions on G on which there is a natural rugular representation R of G by formula. 

 

In particular, the unipotent radical of N=   
1 𝑥
0 1

   𝑥 ∈ R  B is acting by the translation on varable z to z + x. For 

any funciton ψ: N\ ℍ → ℂ of variable y decreasing fast enough when y approaches to 0 or ∞, one defines the 

incomplete θ-series. 

 

which is certainly of class L2(N ∩ Γ\H). Denote by 

Θ = hθt,ψ|∀ψ, ti ⊂ L
2
(Γ\H ) 

the space of incomplete θ-series. 

It is well-known that the orthogonal complement Θ⊥ of Θ in L
2
(Γ\H) is isomorphic to the space H0of cuspidal 

parabolic forms or in other words, of automorphic forms with zero Fourier constant terms of automorphic 

representations, H = Θ⊕H0. Consider the Hecke algebra ℋ(SL(2, ℝ)) of all convolution Hecke operators of form as 

follows. Let F: ℍ→ℂ be a function K invariant with respect to transformations of form z →γz, for all γ∈K. Such a 

function is uniquely defined by a function on K\G/K, or a so called spherical function F on G which is left and right 

invariant by K. Under convolution these functions provide the Hecke algebra of Hecke operators by convolution 

with functions in representations. All the Hecke operators have kernel as follows. For any automorphic function f.  

f (γz) = f (z), ∀γ ∈ Γ. 
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Denote the sum of kernel over cups by 

 

The Hecke operator with kernel K(z, 𝑧′ ) has the same spectrum as the operator with kernel K∗(
z, 𝑧′ ) = K(z, 𝑧′ ) − H 

(z, 𝑧′ ). The kernel K∗(z, 𝑧′ ) are bounded and the fundamental domain Γ\ℍ has finite volume, therefore the kernels 

K∗(z, 𝑧′ ) are of class L
2
on D × D, D = Γ\ ℍ, and all the Hecke operators are compact operators. The Hecke operators 

keeps each irreducible components of Θ⊥ invariant and therefore are scalar on each automorphic representation. On 

each irreducible component, the Laplace operators has also a fixed eigenvalue. 

f=f,= 
s(s1)

4 ,=y
2

 








 


2

x
2+ 


2

y
2  

One deduces therefore the theorem of spectral decomposition for the discrete part of the regular representation. 

Theorem 4.1 (Spectral decomposition). In the induced representation space of Ind 𝜒, 𝜆, 𝜀𝐵
𝐺  

, choose 

 

They are all of dimension 1 and  

 

The discrete part R|L
2
cusp(Γ\SL(2, ℝ) of the regular representation can be decomposed as the sum of the discrete 

series representations 𝜋𝑛
± in spaces 

 

or 

 

s ∈ ℤ, s > 0 and s+1 ≡ ε mod 2 and there exists m ∈ℤ, m = s+1, m > 0, induced from χiλ,ε= |a|
iλ
(sign a)

ε
 and limits of 

principal series representations 𝜋0
± in 𝐷1

+ or 𝐷1
− as two component of the representation 𝜋1

0 = Ind 𝜒, 𝜆, 𝜀𝐵
𝐺 , induced 

from the character χ0,1. 

Remark 4.2. In the spaces ⊕−m<n<m   Hn of dimension 2m − 1 the finite dimensional representations Vm are realized. 

Corollary 4.3. For any function ϕ of class C(𝑐
∞)G,the operator 𝜋𝑛

± (ϕ) is of trace class and is a distribution denoted 

by 𝛩𝑛
± (following Harish-Chandra) which are uniquely defined by their restriction to the maximal compact subgroup 

K = SO(2) and 

 

with multiplicities m(π
±

 𝑛
) 

4.2. Stable Trace Formula  

The Galois group Gal(ℂ/ℝ) = ℤ2 of the complex field C is acting on the discrete series representation by character 

κ(σ) = ±1. Therefore the sum of characters can be rewrite as some sum over stable classes of characters. 
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Remark 4.4. The stable trace formula is uniquely defined by its restriction to the maximal compact subgroup K = 

SO(2) and is 

S
n

= 


+
n


n

e
i
e
i

=2isin(e
in

e
in

). 

V. ENDOSCOPYS 

5.1. Stable Orbital Integral  

Let us remind that the orbital integral is defined as 

 

The main idea of computation of endoscopy transfer was explained in [La], we make it here in more detail to clarify 

some points. 

The complex Weyl group is isomorphic to 𝔖2 while the real Weyl group is iso-morphic to 𝔖1. The set of conjugacy 

classes inside a strongly regular stable elliptic conjugacy class is in bijection with the pointed set 𝔖2 𝔖1  = 𝔖2 that 

can be viewed as a sub-pointed-set of the group 𝔈 ℝ, 𝑇, 𝐺 =  𝑍2  we shall denote by  𝔎 ℝ, 𝑇, 𝐺 ≅ ℤ2   its 

Pontryagin dual. 

Consider κ≠1 in  𝔎 ℝ, 𝑇, 𝐺  such that 𝒦 𝐻 = −1. Such a κ is unique. The endoscopic group H one associates to κ 

is isomorphic to SO(2) the positive root of h in H (for a compatible order) being α = ρ. 

Let fµbe a pseudo-coefficient for the discrete series representation πµ then the κ-orbital integral of a 

regular element γ in T (R) is given by 

 

because there is a natural bijection between the left coset classes and the right coset classes. 

5.2. Endoscopic Transfer  

We make details for the guides of J.-P. Labesse [La]. The simplest case is the case when γ= diag(a, a−1). In this 

case, because of Iwasawa decomposition x = auk, and the K-bivariance, the orbital integral is 

 

where f  is the result of integration on variable x. The integral is abosolutely and uniformly convergent and therefore 

is smooth function of a ∈ ℝ+
∗ .Therefore the function. 
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is a smooth function on the endoscopic group H = R∗ 

The second case is the case where 𝛾 = 𝑘𝜃  
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
 . We have again, x = auk and 

 

𝑓  is the result of integration on variable 𝓍. When f is an element of the Hecke algebra, i.e. f is of class 𝐶0
∞(G) and is 

K-bi-invariant, the integral is converging absolutely and uniformly. Therefore the result is a function F (sin θ). The 

function f has compact support, then the integral is well convergent at +∞. At the another point 0, we develope the 

function F into the Tayor-Lagrange of the first order with respect to λ = sin θ → 0 

F (λ) = A(λ) + λB(λ), 

where A(λ) = F (0) and B(λ) is the error-correction term 𝐹′  (τ) at some intermediate value τ, 0 ≤ τ ≤ t. Remark that 

 

we have 

 

where g ∈ 𝐶𝑐
∞(N) and g(λ) ∼=O(−t

−1
λ)

−1
. B is of logarithmic growth and  

B(λ) ≅ ln(|λ|
−1

)𝑔(1) 

up to constant term, and therefore is contimuous. 

 

Hence the functions 

G(λ) = |λ|(F(λ) + F (λ)), 

H (λ) = λ(F(λ) − F (−λ)) 

have the Fourier decomposition 

G()= 
n=0

N
 (a

n
||

1
+b

n
)

2n
+o(

2N
) 
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H()= 
n=0

N
 h

n


2n
+o(

2N
) 

Summarizing the discussion, we have that in the case of γ = k(θ), there exists also a continuous function f
H
such that 

f
H
(γ) = ∆(γ)(Oγ (f) − Owγ (f )) = ∆(k(θ))SOγ (f ), 

where ∆(k(θ)) = −2i sin θ. 

Theorem 5.1. There is a natural function ε : Π → ±1 such that in the Grothendieck group of discrete series 

representation ring, 


G
= 


 (),  

the map σ → σG is dual to the map of geometric transfer, that for any f on G, there is a unique f
H
on H 

tr σG(f ) = tr σ(f
H
). 

Proof.: There is a natural bijection Πµ≅ 𝔇 ℝ, 𝐻, 𝐺 , we get a pairing 

.,.:

k(R,H,G)C.  

Therefore we have 

tr


(f
H

)= 




 s,tr(f).  

Suppose given a complete set of endoscopic groups H = 𝕊
1
× 𝕊

 1
× {±1} or SL(2, ℝ) × {±1}. For each group, there is 

a natural inclusion 

:
L
H↪

L
G 

Let ϕ : DWR→
L
G be the Langlands parameter, i.e. a homomorphism from the Weil-Deligne group DWR= WR⋉

ℝ+
∗ the Langlands dual group, Sϕ be the set of conjugacy classes of Langlands parameters modulo the connected 

component of identity map. For any s ∈ 𝕊ϕ, 𝐻𝑠 = Cent(s,𝐺 )
◦ 
the connected component of the centralizer of s ∈Sϕ we 

have 𝐻𝑠 is conjugate with H . Following the D. Shelstad pairing. 

s,:S

()C  

()=c(s)s,. 

 

Therefore, the relation 




s

 tr(fH)= 


 ()tr(f) 

can be rewritten as 

 

and 
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We arrive, finally to the result 

Theorem 5.2. 

tr(f)= 
1

#S


 
sS



 s,
s
( f H).  

VI. POISSON SUMMATION FORMULA 

In the Langlands picture of the trace formula, the trace of the restriction of the regular representation on the cuspidal 

parabolic part is the coincidence of the spectral side and the geometric side. We refer the reader to the work of J.-p. 

Labesse [La] for more detailed exposition 




 m() f ()= 
H

 a
G

 f ()                                                                                                      (6.1) 

Let us do this in more details. 

6.1. Geometric Side of the Trace Formula 

Theorem 6.1. The trace formula for the regular representation of SL(2, ℝ ) in the space of cusp forms is 

deccomposed into the sum of traces of automorphic representations with finite multiplicities is transfered into the 

modified Poisson summation formula. 

                                                                                             (6.2) 

Proof. It is easy to see that the restriction of the Laplace operator ∆ on the Cartan subgroup H is elliptic and 

therefore the Cauchy problem for the other variables has a unique solution. The solution is the trace formula for the 

cuspidal parabolic part of the regular representation. 

                            (6.3) 

From another side we have 

 

                            (6.4) 

6.2. Spectral Side Of The Trace Formula  

The following result is well-known, see e.g. ([GGPS], Ch. 1). 

Theorem 6.2 (Gelfand - Graev - Piateski-Shapiro). For any compactly supported function f ∈𝐶0
∞ (SL2(ℝ)) the 

operator R(f )|L2cusp(Γ\ SL2(ℝ)))) is of trace class and each irreducible component is of finite multiplicity. 

                         (6.5) 

where m(π) = dimℂ HomSL 2 (R)(Dk, 𝐿𝑐𝑢𝑠𝑝
2 (Γ\ SL2(ℝ))). 
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6.3. Poisson Summation Formula  

Therefore, following the Poisson summation formula we have the equlity of the both sides. Let us denote by χkthe 

character of SO(2) that induce the discrete series representation Dk of SL2(ℝ))). In our case the Cartan subgroup is 

SO(2) and we have the ordinary. 

Lemma 6.3. De note the universal covering of H = SO(2) by H = Spin(2). 

                          (6.6) 

Proof. It is the same as ordinary Poisson summation, lifted to the universal covering H = of SO(2). 

Theorem 6.4. The trace tr R(f ) of the restriction of the regular representation on the cuspidal parabolic part 

L
2
cusp(G) is computed by the formulas 

                                   (6.7) 

Proof. The proof just is a combination of the previous theorems 6.1, 6.2 and 6.3 therefore is complete. 

VII. CONCLUSION 

We developed in this paper a new appoach to the construction of automorphic representations based on a procedure 

of quatization. The Langlands picture of automorphic representations and endoscopy are precised for the case of 

SL(2, R). 
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