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Abstract: In the present paper, we used two different algorithms   to solve some partial differential equations, 
where these equations originated from the well-known two parameters of lognormal distributions. The first 

approach that we adopted was the classical method which involved solving a triply of partial differential 

equations. The second approach that we used was the well-known Darboux Theorem. As we expected the two 

results were identical. 
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I. INTRODUCTION  

The shortest distance between two points on an arbitrary surface has interested both mathematicians and statisticians 
for a very long time. Mathematicians are usually interested in the following types of mapping: conformal mapping 

where the angles are preserved isometric mapping where both distances and angles are preserved equiareal mapping 

where areas are preserved; and geodesic mapping in which geodesics are preserved. While distance function makes 

statistician useful can be explained from both a theoretical and a practical view. Almost all statistical distributions 

now in application have their Gaussian Curvature different from zero. For example, Chen[1] has determined that 

normal distribution has -0.5 while Cauchy distribution equal -2. This means the shortest distance between the two 

points is not a straight line but some curvature line. So the distance between these two points can not use the typical 

formula to find the distance between two points. This will affect our hypothesis test results “reject null hypothesis” 

or “fail to reject it”. To better understand this question, we will use the following example. Let us assume the most 

common and elementary situation as the first course in elementary statistics. A random variable X is normally 

distributed with mean   and variance 
2

0 , where   is unknown to us but variance 
2

0  is known. Also assume 

we wish to test the following hypothesis,   H   versus 0a00  H , with a sample of size one. We all 

know in this situation the critical region is  00 c   - x  / xC .  Then, the question becomes, is “the 

distance between ),( and ),( 2

0

2

00  xNN  big enough for us to reject 0H ?” Because it is not the usual 

straight line, and we know the Gaussian Curvature of the Normal distribution is a negative constant. So we should 

use distance function from hyperbolic surface of sheet to measure this distance.  

II.  LIST THE FUNDAMENTAL TENSOR  

The probability density function for the lognormal Distribution is given by 
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From above equation, we derive the metric tensor components for the lognormal case as follow, 
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III.   THE GEODESIC EQUATION 

Method to find the geodesic equation of the lognormal distribution is by solving a triply of partial differential 
equations given in the appendix I. We seek its solution in the following section. 
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It only needs two out of above three equations to find lognormal model geodesic equation. We will choose the first 

and third equations. To simplify the notation, we let 
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Alternatively, we can find the geodesic equation of the lognormal distribution by solving one partial differential 
equation. This idea originated from French mathematician Darboux’s theory. Detail proof has given in Chen [2][3]     

From section 2, we know that the coefficient of the first fundamental form is given as, 

2
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To solve above patial differential equation (3.5), we use the separable variable method as follow. 
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Combine solution (3.6) and (3.7), we finally find the general solution of lognormal Distribution z as follow. 
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,    applying the Darboux Theorem, we can find the geodesic equation of the lognormal

z
Distribution by taking partial derivative with respect to A and equal to B. i.e. 
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IV.  APPENDIX I 

We list the six well known Christoffel Symbols as follows. For detail derivation see Struik[4] or Grey[5]. 
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In general, the solution of the geodesic equation depends upon a pair of partial differential equations as below.  
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V. APPENDIX II 

Statisticians have used the Bayesian theory to develop the so called “predictive distance”. In a personal letter 
communication with Mitchell, A.F.S.[6][7] the author has learned the following example.  

Consider the gamma distribution with known 
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The predictive distance then follows to be  
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