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Abstract: Control charts are one of the most common techniques that have been used to observe and control the 

process deviations in the industry. The easiest and the most prevalent method of control charts is the Shewhart S-

control chart. This method is based on the normal distribution assumption. However, there are a lot of inferences 
in literature that non-normal distributions are much more common than the normal distribution. When the 

normality assumption is not satisfied robust methods are preferred. In this paper, we determine some approaches 

by using robust scale estimators instead of simple standard deviation in order to apply S-control charts. 

Furthermore the performances of these different scale estimators are compared by Monte Carlo simulation study. 

Numerical examples are given at the end of the paper 

Keywords: S-control charts, Scale estimators, Robust estimation, Non-normal distributions 

I. INTRODUCTION 

Control charts can be used to determine if a process has been in a state of statistical control by examining last data 

(Ryan, 1989). There are several advantages of using control charts; they improve the communication by applying a 

common methodology and enhance self-control. These charts identify the source of the problem and control charts 
can be determined lasting documents which provide information about the process performance. 

Control charts generally contain central line (CL) and two control limits that are drawn horizontal and symmetrically 

below and above the central line. The central line shows the target value and the control limits determine the control 

area. If the process is between the upper control limit (UCL) and the lower control limit (LCL), it is said to be in-

control. The final purpose of a control chart is to give a data-driven tool to help businesses to bring an out-of-control 

process back into an in control state.  

Many different types of control charts have been studied in statistics literature. The Shewhart control charts have 

been the most frequently used control charts. The control chart based on the general theory proposed by Walter A. 

Shewhart is called as Shewhart control charts. These charts are the control graphs that plot sample standard 

deviations (S) in order to control the variability of a variable. The central line and the control limits of S-charts are 

calculated as, 

𝐿𝐶𝐿 = 𝑆 − 3
𝑆 

𝑐4
 1 − 𝑐4

2                                          (1) 

𝐶𝐿 = 𝑆                                              (2) 

𝑈𝐶𝐿 = 𝑆 + 3
𝑆 

𝑐4
 1 − 𝑐4

2                                          (3) 

Where 𝑆 =
 𝑆𝑖
𝑚
İ=1

𝑚
 and m is the number of subgroups. S is not an unbiased estimator of population standard deviation 

. Therefore, 𝑐4 is a constant that makes S unbiased and depends on the sample size n. 

When the underlying distribution is normal then S is an efficient estimator of . However, in literature, there are 
several studies saying that non-normal distributions are more prevalent than the normal distribution in practice, see 

for example, Pearson (1932), Geary (1947), Huber (1981) and Tan and Tiku (1999). In addition, observations in a 

sample which are too small or too large as compared to the bulk of observations are called outliers. Since their 

presence adversely affects the efficiency of most statistical procedures (Tiku and Akkaya, 2004). S is very sensitive 

to the outliers. In order to handle these difficulties robust estimation methods have been studied for last decades.  

Shewhart control charts are based on the sample mean (𝑥 ) and S. Therefore, they are not resistant for non normality 
and/or presence of outliers. Ferrell (1953) proposed median and median midranges as control limits. Langenberg and 
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Iglewicz (1986) used trimmed means as determining control limits. Iglewicz and Hoaglin (1987) proposed plotting 

subgroup box plots involving inter quartile range (IQR). Rocke (1989) suggested another way of calculating 

resistant control limits. Abu-Shawiesh (2008) determined a simple approach to robust estimation of the process 

standard deviation by using Median Absolute Deviation (MAD). They showed that MAD has a better performance 

than S in heavy tailed distributions and moderate sample sizes. In this paper, we expand this approach by using other 

robust scale estimator in the technique of control charts. 

The rest of the paper organizes as follows: in chapter 2, we determine the robust methods of control charts by using 

several robust scale estimators. In chapter 3, we apply these on different real data examples. Lastly, we compare the 

performance of the estimators by using the Monte Carlo simulation study. A conclusion is given at the end of the 

paper. 

1. Control Charts with Robust Scale Estimators 

Most classical statistical analysis are based on some assumptions, especially that the underlying distribution is 

normal. According to Geary (1947), normality is a myth, there never was, and never will be a normal distribution. In 

addition, observations in a sample which are too small or too large as compared to the bulk of observations are 

called outliers. Their presence seriously affects the performance of the normal theory procedures. Therefore, robust 

estimation and testing methods are needed. An estimator is said to be robust if it is fully efficient (or nearly so) for 

an assumed distribution but maintains high efficiency for plausible alternatives (Tiku and Akkaya, 2004). In this 

section, we give small information about some robust scale estimators and we construct robust quality control charts 
based on them. 

1.1. Mean Absolute Deviation 

The MAD was first introduced by Hampel (1974) as a robust alternative to the sample standard deviation. This 

estimator is very simple and easy to compute. For more robust and efficient estimators, MAD is used for initial 

estimator for iterative procedures. The MAD is calculated as 

𝑀𝐴𝐷 = 1.4826 𝑚𝑒𝑑 {|𝑥𝑖 −𝑚𝑒𝑑(𝑥𝑖)|}                                        (4)  

The MAD has important robustness properties 

 It has a maximum breakdown point which is % 50. 

 The gross error sensitivity is 1.167 which is the smallest value that can be obtained with any dispersion estimator 

in normal distribution. 

 The influence function of MAD is bounded. 

 The efficiency of MAD is % 37 at normal distribution. 

The control limits and central line for the Shewhart-S control chart based on the MAD are calculated as follows: 

𝐿𝐶𝐿 = 𝑐4𝜎 − 3𝜎  1 − 𝑐4
2 = 𝐵5

∗𝑀𝐴𝐷        

𝐶𝐿 = 𝑐4𝜎 = 𝑐4
∗𝑀𝐴𝐷        

𝑈𝐶𝐿 = 𝑐4𝜎 + 3𝜎  1 − 𝑐4
2 = 𝐵6

∗𝑀𝐴𝐷                                                                               (5) 

The values of the control limit factors 𝑐4
∗, 𝐵5

∗and𝐵6
∗are given in the paper Omar and Abu-shawiesh (2008). They 

showed that in normal distribution, MAD has sameperformance with sample standard deviation. However, in non 

normal distribution, especially heavy tailed distribution, and for moderate sample sizes the robust method leads 

better performance than corresponding normal theory. 

1.2. 𝐒𝐧 and 𝐐𝐧 Estimators 

Rousseeuw and Croux(1993) introduced new robust scale estimators alternative to the MAD. As determined in the 

paper the MAD has low efficiency at Gaussian distributions and uses symmetric way of variation. The estimator 

𝑆𝑛does not need any locationestimation and is defined by 

𝑆𝑛 = 1.1926 𝑚𝑒𝑑𝑖{𝑚𝑒𝑑𝑗 |𝑥𝑖 − 𝑥𝑗 |}                                        (6) 

𝑆𝑛Estimator is a very powerful alternative to the MAD and has better robustness properties like; 

 It has also a maximum breakdown point which is % 50. 
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 The influence function is also bounded. 

 The efficiency of Snestimator is % 58.23 at normal distribution which is better than the MAD. 

𝑄𝑛Estimator, on the other hand, shares the same propertieswith 𝑆𝑛estimator also it has a smooth and bounded 
influence function. It is calculated by, 

𝑄𝑛 = 2.219 {|𝑥𝑖 − 𝑥𝑗 |; 𝑖 < 𝑗}𝑘                                          (7) 

Where 𝑘 =  ℎ
2
 ≈  

𝑛
2
 /4.  𝑄𝑛estimators’robustness properties 

 It has also a maximum breakdown point which is % 50. 

 The influence function is also bounded and has no discrete part. 

 The efficiency of Qn estimator is % 82 at normal distribution which is better than the MAD and Snestimator. 

In small sample sizes 𝑆𝑛estimator performs better than 𝑄𝑛estimator (Rousseeuw and Croux, 1993). 

The limits and the center line of the Shewhart-S control chart based on 𝑆𝑛 (𝑆𝑛   =
 𝑆𝑛(𝑖)
𝑚
İ=1

𝑚
)and 𝑄𝑛 (𝑄𝑛

    =
 𝑄𝑛 (𝑖)
𝑚
İ=1

𝑚
)estimator are found as follows 

𝐶𝐿𝑆 = 𝑐4𝜎 = 𝑐4𝑑𝑛𝑆𝑛   = 𝑐4
𝑆𝑆𝑛       𝑎𝑛𝑑  𝐶𝐿𝑄 = 𝑐4𝜎 = 𝑐4𝑒𝑛𝑄𝑛

    = 𝑐4
𝑄𝑄𝑛
     

𝐿𝐶𝐿𝑆 = 𝑐4𝜎 − 3𝜎  1 − 𝑐4
2 = 𝑐4𝑑𝑛𝑆𝑛   − 3𝑑𝑛𝑆𝑛    1 − 𝑐4

2    = 𝐵𝑆𝐿
∗ 𝑆𝑛    

𝐿𝐶𝐿𝑄 = 𝑐4𝜎 − 3𝜎  1 − 𝑐4
2 = 𝑐4𝑒𝑛𝑄𝑛

    − 3𝑒𝑛𝑄𝑛
     1 − 𝑐4

2    = 𝐵𝑄𝐿
∗ 𝑄𝑛
     

𝑈𝐶𝐿𝑆 = 𝑐4𝜎 + 3𝜎  1 − 𝑐4
2 = 𝑐4𝑑𝑛𝑆𝑛   + 3𝑑𝑛𝑆𝑛    1 − 𝑐4

2    = 𝐵𝑆𝑈
∗ 𝑆𝑛    

𝑈𝐶𝐿𝑄 = 𝑐4𝜎 + 3𝜎  1 − 𝑐4
2 = 𝑐4𝑒𝑛𝑄𝑛

    + 3𝑒𝑛𝑄𝑛
     1 − 𝑐4

2    = 𝐵𝑄𝑈
∗ 𝑄𝑛
                                                                (8) 

where𝑑𝑛and 𝑒𝑛are the correction factors that make these estimators unbiased for normal distribution for 

𝑆𝑛and𝑄𝑛 respectively. 

The values of the control limit factors 𝑑𝑛 ,𝑒𝑛 , 𝑐4
𝑆 , 𝑐4

𝑄 , 𝐵𝑆𝐿
∗ , 𝐵𝑄𝐿

∗ , 𝐵𝑆𝑈
∗ and 𝐵𝑄𝑈

∗ are given in Table 1. 

1.3. 𝛕Estimator 

𝜏estimator is introduced by Yohai and Zamar (1988) and isalso proposed by Maronna and Zamar (2002) as a 

starting robust estimator for estimating iterative variance covariance matrix. Asymptotically, 𝜏estimate is equivalent 
to an M estimatewith a function given by a weighted average of two psi-functions, one corresponding to a very 

robust estimate and the other to a highly efficient estimate (Yohai and Zamar, 1988). The estimate is calculated as 

follows: Define the functions; 

𝑊𝑐(𝑥) =  1 −  
𝑥

𝑐
 

2

 
2

 𝐼(|𝑥| ≤ 𝑐)   𝑎𝑛𝑑   𝜌𝑐(𝑥) = 𝑚𝑖𝑛(𝑥2 , 𝑐2)  

Table1. The control limit factors for 𝑆𝑛  and 𝑄𝑛  estimators 

n 𝑑𝑛  𝑐4
𝑆  𝐵𝑆𝐿

∗  𝐵𝑆𝑈
∗  𝑒𝑛  𝑐4

𝑄
 𝐵𝑄𝐿

∗  𝐵𝑄𝑈
∗  

2 1.175 0.937 0.000 3.062 1.192 0.951 0.000 3.108 

3 1.482 1.313 0.000 3.372 1.491 1.322 0.000 3.393 

4 1.349 1.243 0.000 2.815 1.355 1.248 0.000 2.827 

5 1.244 1.169 0.000 2.439 1.275 1.199 0.000 2.501 

6 1.197 1.139 0.036 2.241 1.259 1.198 0.038 2.358 

7 1.156 1.109 0.134 2.084 1.211 1.162 0.141 2.184 

8 1.130 1.090 0.196 1.984 1.173 1.132 0.203 2.061 
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9 1.123 1.089 0.260 1.917 1.134 1.099 0.263 1.936 

10 1.097 1.067 0.299 1.834 1.101 1.071 0.300 1.841 

11 1.096 1.068 0.337 1.799 1.099 1.071 0.338 1.804 

12 1.076 1.052 0.372 1.731 1.078 1.054 0.373 1.735 

13 1.075 1.052 0.401 1.702 1.073 1.051 0.400 1.701 

14 1.066 1.046 0.428 1.664 1.065 1.045 0.428 1.663 

15 1.059 1.039 0.441 1.639 1.059 1.040 0.448 1.640 

16 1.056 1.039 0.472 1.606 1.056 1.039 0.472 1.606 

17 1.047 1.031 0.485 1.578 1.047 1.031 0.485 1.578 

18 1.045 1.030 0.501 1.559 1.046 1.031 0.502 1.560 

19 1.040 1.026 0.517 1.535 1.042 1.028 0.518 1.538 

20 1.039 1.025 0.517 1.535 1.039 1.025 0.516 1.534 

21 1.039 1.026 0.535 1.517 1.036 1.023 0.533 1.514 

22 1.038 1.026 0.554 1.497 1.035 1.023 0.552 1.494 

23 1.036 1.024 0.552 1.496 1.034 1.022 0.551 1.493 

24 1.033 1.022 0.571 1.473 1.032 1.021 0.571 1.472 

25 1.033 1.022 0.571 1.473 1.030 1.019 0.569 1.469 

Let 𝑋 = [𝑥1 , 𝑥2 ,… , 𝑥𝑛 ] be a univariate sample and put 

𝜎0 = 𝑀𝐴𝐷(𝑥)    𝑎𝑛𝑑  𝑤𝑖 = 𝑊𝑐𝑖 =  
𝑥𝑖 −𝑚𝑒𝑑(𝑥)

𝜎0

  

Then the location and scale statistics are defined  

𝜇(𝑥) =
 𝑥𝑖𝑤𝑖

𝑛
𝑖=1

 𝑤𝑖
𝑛
𝑖=1

 

𝜎(𝑥)2 =
𝜎0

2

𝑛
 𝜌𝑐2  

𝑥𝑖−𝜇(𝑥)

𝜎0
 𝑛

𝑖=1                                                                          (9) 

To combine robustness and efficiency, 𝑐1 = 4.5and 𝑐2 = 3 are taken (Maronna and Zamar, 2002). 𝜏 estimators have 

the following robustness properties 

 It has also a maximum breakdown point which is % 50, 

 They are qualitatively robust, 

 They are highly efficient for normal distribution. 

The limits and the center line of the Shewhart-S control chart based on𝜏(𝜏 =
 𝜏𝑖
𝑚
İ=1

𝑚
)estimator are found as follows 

𝐶𝐿𝜏 = 𝑐4𝜎 = 𝑐4𝑘𝑛𝜏 = 𝑐4
𝜏𝜏  

𝐿𝐶𝐿𝜏 = 𝑐4𝜎 − 3𝜎  1 − 𝑐4
2 = 𝑐4𝑘𝑛𝜏 − 3𝑘𝑛𝜏  1 − 𝑐4

2    = 𝐵𝜏𝐿
∗ 𝜏    

𝑈𝐶𝐿𝜏 = 𝑐4𝜎 + 3𝜎  1 − 𝑐4
2 = 𝑐4𝑘𝑛𝜏 + 3𝑘𝑛𝜏  1 − 𝑐4

2    = 𝐵𝜏𝑈
∗ 𝜏                                                                                          (10) 

The values of the control limit factors 𝑘𝑛 , 𝑐4
𝜏 , 𝐵𝜏𝐿

∗ and 𝐵𝜏𝑈
∗  are given in Table 2. (𝑘𝑛 is the correction factor) 

2.  Numerical Example 

The numerical example is about a company uses a process to paint refrigerators with a coat of enamel. During each 
shift, a sample of 5 refrigerators is selected and the thickness of the paint (in mm) is determined. If the enamel is too 

thin, it will not provide enough protection. If it is too thick it will result in an uneven appearance with running and 

wasted paint. Table 3 shows the measurements from 20 consecutive shifts and the calculated statistics. 

Table2. The control limit factors for 𝜏 estimators 

n 𝑘𝑛  𝑐4
𝜏  𝐵𝜏𝐿

∗  𝐵𝜏𝑈
∗  

2 1.192 0.951 0.000 3.102 

3 1.373 1.217 0.000 3.125 
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4 1.241 1.144 0.000 2.590 

5 1.178 1.108 0.000 2.310 

6 1.143 1.088 0.035 2.141 

7 1.121 1.076 0.130 2.022 

8 1.111 1.071 0.192 1.950 

9 1.103 1.069 0.255 1.883 

10 1.090 1.060 0.297 1.822 

11 1.081 1.054 0.333 1.775 

12 1.074 1.050 0.372 1.728 

13 1.072 1.050 0.400 1.700 

14 1.065 1.045 0.428 1.663 

15 1.064 1.045 0.442 1.647 

16 1.064 1.045 0.475 1.617 

17 1.060 1.044 0.490 1.597 

18 1.057 1.042 0.507 1.577 

19 1.053 1.048 0.523 1.554 

20 1.051 1.037 0.523 1.552 

21 1.048 1.035 0.539 1.530 

22 1.047 1.035 0.559 1.512 

23 1.045 1.033 0.557 1.509 

24 1.044 1.032 0.577 1.489 

25 1.043 1.032 0.577 1.488 

The performances of all types of estimators are shown in Figure 1. Figure 1 indicates that, all types of control charts 

are out-of control. However, the first and second control charts based on S and MAD respectively show that two 

points are out of control. On the other hand, the control charts based on other robust estimators indicates that one 

point is out of control. 

Table3. The Thickness of Refrigerators and Calculated Statistics 

Shift No      𝑋  S MAD 𝑆𝑛  𝑄𝑛  𝜏 

1 2.7 2.3 2.6 2.4 2.7 2.54 0.182 0.148 0.119 0.222 0.164 

2 2.6 2.4 2.6 2.3 2.8 2.54 0.195 0.297 0.239 0.222 0.174 

3 2.3 2.3 2.4 2.5 2.4 2.38 0.084 0.148 0.119 0.222 0.075 

4 2.8 2.3 2.4 2.6 2.7 2.56 0.207 0.297 0.239 0.222 0.186 

5 2.6 2.5 2.6 2.1 2.8 2.52 0.259 0.148 0.119 0.222 0.223 

6 2.2 2.3 2.7 2.2 2.6 2.40 0.235 0.148 0.119 0.222 0.218 

7 2.2 2.6 2.4 2.0 2.3 2.30 0.224 0.148 0.239 0.222 0.200 

8 2.8 2.6 2.6 2.7 2.5 2.64 0.114 0.148 0.119 0.222 0.102 

9 2.4 2.8 2.4 2.2 2.3 2.42 0.228 0.148 0.119 0.222 0.208 

10 2.6 2.3 2.0 2.5 2.4 2.36 0.230 0.148 0.239 0.222 0.210 

11 3.1 3.0 3.5 2.8 3.0 3.08 0.259 0.148 0.119 0.222 0.223 

12 2.4 2.8 2.2 2.9 2.5 2.56 0.288 0.445 0.358 0.222 0.258 

13 2.1 3.2 2.5 2.6 2.8 2.64 0.404 0.297 0.358 0.444 0.361 

14 2.2 2.8 2.1 2.2 2.4 2.34 0.279 0.148 0.119 0.222 0.222 

15 2.4 3.0 2.5 2.5 2.0 2.48 0.356 0.148 0.119 0.222 0.284 

16 3.1 2.6 2.6 1.8 2.1 2.64 0.365 0.297 0.239 0.444 0.326 

17 2.9 2.4 2.9 1.3 1.8 2.26 0.702 0.741 0.596 0.666 0.629 

18 1.9 1.6 2.6 3.3 3.3 2.54 0.783 1.038 0.835 1.095 0.700 

19 2.3 2.6 2.7 2.8 3.2 2.72 0.327 0.148 0.239 0.222 0.270 

20 1.8 2.8 2.3 2.0 2.9 2.36 0.483 0.741 0.596 0.444 0.432 

Mean       0.311 0.296 0.263 0.321 0.273 

CL       0.311 0.336 0.307 0.384 0.303 

LCL       0.000 0.000 0.000 0.000 0.000 

UCL       0.647 0.702 0.639 0.802 0.631 
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3. Simulation Study 

In this section, we compare the performances of different control charts for different distributions. All the simulation 

results are based on [100,000/n] Monte Carlo runs and 100 subgroups and 10 sample sizes. We use some models, 

which distributed near normal or contains outliers namely Dixon's outlier model -$(n-1)$ observation come from 

normal distribution and one outlier (not known which one) comes from normal distribution with higher standard 

deviation value than the distribution that the bulks of data come from-, Contamination model -(1-p)% of the 
observation come from normal distribution with standard deviation S and p% of the observation come from normal 

distribution with standard deviation not equal to S, where p is a proportion differs from [0,1]- and Mixture model -

(1-p)% of the observation come from normal distribution with standard deviation S and p% of the observation come 

from other distributions near normal-. We use the following sample models to represent a large number of plausible 

alternatives. 

 

Fig1. Control charts based on scale estimators 
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Table4. Control limits of control charts based on scale estimators 

Model (1) 

 S MAD 𝑆𝑛  𝑄𝑛  𝜏 

LCL 0.264 0.266 0.272 0.274 0.269 

CL 0.963 0.897 0.971 0.980 0.963 

UCL 1.662 1.668 1.670 1.684 1.656 

Out-of-Control 1 1 1 1 1 

Model (2) 

LCL 0.740 0.494 0.319 0.338 0.534 

CL 2.694 1.742 1.136 1.208 1.909 

UCL 4.647 2.991 1.953 2.076 3.281 

Out-of-Control 15 7 2 4 6 

Model (3) 

LCL 0.421 0.318 0.319 0.325 0.377 

CL 1.532 1.127 1.137 1.160 1.347 

UCL 2.643 1.934 1.954 1.995 2.315 

Out-of-Control 8 2 1 1 1 

Model (4) 

LCL 0.290 0.238 0.279 0.291 0.289 

CL 1.056 0.838 0.998 1.039 1.033 

UCL 1.821 1.439 1.716 1.786 1.776 

Out-of-Control 3 2 1 1 1 

Model (5) 

LCL 0.738 0.519 0.344 0.353 0.578 

CL 2.686 1.828 1.228 1.262 2.063 

UCL 4.634 3.130 2.112 2.169 3.547 

Out-of-Control 16 11 2 2 5 

Sample Models 

 Model (1): Normal Distribution N(0,1) 

 Model (2): Dixon's outlier model: (n-1) observations come from N(0,1) but one observation (we do not know 

which one) comes from N(0,10) 

 Model (3): Contamination model: 0.90N(0,1) +0.10N(0,4) 

 Model (4): Mixture model: 0.90N(0,0.01) +0.10 t(2) 

 Model (5): Cauchy Model 

Simulation results are given in Table 4. 

As indicated in Table 4, in normal distribution, all estimators leads approximately to the same control limits and also 

all have the same number of points falling outside the control limits. However, in model (2) and model (3), control 

chart based on sample standard deviation have the biggest control interval and also have the most number of out of 

control points because of the outliers. Control charts based on𝑆𝑛 , 𝑄𝑛and 𝜏estimators have better performances with 

respect to S and MAD estimators. There are approximately same results in model (4) and (5). 

II. CONCLUSION 

Traditionally, control charts for monitoring the process variability are based on some assumptions. There are several 

forms of control charts. The most common control chart is Shewhart S control charts. These control charts are drawn 

with calculating standard deviations of subgroups. However, S is not a robust estimator. For this reason, we 

presented different control charts based on robust scale estimators. The result of numerical example and Monte 

Carlo simulations show that the proposed robust methods leads approximately to the same performance in the 

presence of normality and for alternative models, such as outlier, contamination and mixture model robust methods 

have better performance than traditionally used method. For heavy tailed distribution such as Cauchy, the robust 
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methods also have better performances as expected. When we compare robust methods, 𝑄𝑛and 𝑆𝑛  estimators have 

better properties than the other robust methods. Therefore, in the case of non normality or outliers, it is 

recommended to use proposed robust control charts as an alternative to S control charts. 
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