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Introduction

Solid magnesium oxide and hydroxide is used in various processes and finds many applications in a variety of 
fields such as water treatment [1–3], heat storage [4,5] CO2 storage [6,7] and sound absorption [8] among many 
others. As a result its surface chemical and textural properties have been extensively studied by several authors. 
For example, Pilarskaa et al have studied the effect of the use of non-ionic modifiers during precipitation on the 
physicochemical and functional properties of magnesium hydroxides [9]. Carrott et al studied the mechanism 
of the thermal decomposition of magnesium hydroxide to magnesium oxide by measuring water vapour 
adsorption isotherms on partially decomposed magnesium hydroxides samples [10]. Kumari et al have studied 
the optical and electrical properties of magnesium oxide micro- and nano-structures synthesized under various 
conditions [11]. The surface area, basicity and base strength distribution of magnesium oxide obtained from 
magnesium hydroxide prepared using various synthesis conditions and ageing periods, have been investigated. 
The surface properties were found to be strongly influenced by the preparation conditions for the precursor, 
magnesium hydroxide, and the calcination conditions used [12]. Clifford et al have used a liquid-liquid 
reaction to synthesize Mg(OH)2 using spinning disc reactor showing that the concentration ratio and reactant 
concentration and mixing conditions had a great affect on the particle size [13]. Superfine magnesium 
hydroxide with monodispersity was reported to be synthesized via direct precipitation method exhibiting a 
pure high crystalline material [14]. Among other applications, magnesium hydroxide is commonly used as 
flame-retardant filler in composite materials as it consumes energy during its thermal decomposition releasing 
water and forming an oxide layer, therefore its properties are studied extensively towards this use [15–21], 
as well as a precursor for magnesium oxide refractory ceramic [22]. The microstructure of the powder is of 
prime importance in both technical applications. The influence of synthesis parameters on the morphological 
characteristics of magnesium hydroxide nanoparticles precipitated in dilute aqueous medium was studied [23].  

The precipitation of the hydroxide from alcoholic solutions to form transparent nanocomposite crystals with 
polymers was shown to have applications in optical applications [24]. Mesoporous magnesium oxide (MgO) 
material was synthesized using an integration of the evaporation-induced surfactant assembly and magnesium 
nitrate pyrolysis which delivers a well crystalline high-surface area mesoporous product [25]. The performance 
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of MgO as a transesterification catalyst was studied through the modification of its surface basicity. Such 
modifications were carried out by different heat treatments, and the modification of surface characteristics by 
covering the surface by carbonate and hydroxyl groups [26].

Previous work in these laboratories has concentrated on the study of the surface chemical properties of calcium 
hydroxide and how synthesis conditions influence these [27-29]. As part of these studies, the application of 
a non-aqueous environment during synthesis has been studied, including how the surface chemistry of the 
product is influenced [30, 31]. In the present paper, a study of the effect of synthesis conditions on the properties 
of magnesium hydroxide is presented, including the use of mixed solvent conditions, as well as the effect of 
altering reagent rations, as well as the ionic strength of the reaction liquor.

Experimental

Magnesium hydroxide was prepared by carefully mixing solutions of magnesium nitrate hexahydrate (Mg(NO3)2 
• 6H2O) and sodium hydroxide. Reagents used were of reagent grade without further purification. Different 
reaction parameters were varied in order to examine their influence on the surface properties of magnesium 
hydroxide. The variables examined were pH, precursor/precipitating agent ratio, and solvent composition. 
Magnesium hydroxide was precipitated by adding the sodium hydroxide solution to the magnesium salt solution 
with vigorous stirring, at 25oC. A series of samples were prepared with different OH-/Mg2+ ratio by varying the 
reactants solution volume while the precursor and precipitating agent concentration was kept constant at 1M 
in both cases. The effect of varying precipitating agent concentration was also examined in a second series of 
samples by altering the NaOH concentration while maintaining the reactants volume stable. In both the series 
of samples the effect of the solvent on the surface properties was examined by performing the precipitation 
in water and ethanol/water solvent with ethanol water ratio of 1:1. The precipitates were left to stand in the 
mother liquor for 24h, filtered and washed several times with deionised water. Next, the samples were dried 
under vacuum at 40 °C for 24h yielding a white Mg(OH)2 powder. All samples prepared are presented in Tables 
1 and 2. A series of samples was also synthesized with the precipitates left to stand in the mother liquor for 5 
minutes as summarized in Table 3 in order to examine the effect of ageing on the samples surface properties.

Nitrogen adsorption isotherm measurements were carried out at 77 K using an ASAP 2010 Micrometrics 
apparatus. The samples were degassed prior to the measurements at 373 K for 24 h. The BET equation was 
used to calculate the surface areas whilst the pore size distributions were estimated using density functional 
theory (DFT) methods employing a slit shaped pore model.  The thermal stability and behavior was studied 
by thermogravimetric analysis (TGA) using a Shimadzu apparatus. The measurements were carried out in air 
up to 873 K and the heating rate was 10 K min-1. The FTIR measurements were performed using a Shimadzu 
spectrometer (FTIR-8501). Powder X ray diffraction was used to determine the crystallinity and to estimate 
the particle size. Measurements were carried out on a Shimadzu 6000 diffractometer using Kα radiation 
(λ=0,15478nm).

The Point of Zero Charge (PZC) was measured for a series of samples using a potentiometric titration method. 
150 mg of magnesium hydroxide were suspended in 100ml of a NaCl 0.1M solution, to which 10ml of a 0.2M 
sodium hydroxide solution was added. A blank sample was prepared with the same composition without the 
magnesium hydroxide. The final suspension was titrated potentiometrically, using a pH electrode, against a 
0.1M hydrochloric acid solution, and compared to the titration for the blank. Where the two titration curves 
meet was the PZC value.

Results and Discussion

Effect of OH-/Mg2+ ratio and solvent composition

The Role of the Solvent in Determining the Surface Texture of Magnesium Hydroxide 

 American Research Journal of Chemistry



Page 3

Table 1. Pore volume, SA and average pore diameter of magnesium hydroxide precipitated with varying Na+/Mg2+ by 
changing the solutions volume while the concentration of magnesium salt and sodium hydroxide was kept constant at 1M.

Solvent
Mg(NO3)2.6H2O
(cm3)

NaOH
(cm3)

Pore Volume
(cm³/g)

SBET
(m2/g)

Pore Diameter 
(nm)
(DFT)

1 H2O 150 50 0.49 72 50

2 H2O 100 50 0.52 74 37
3 H2O 50 50 0.38 70 34

4 H2O 50 100 0.41 88 22

5 H2O 50 150 0.42 113 16

6 H2O/EtOH 150 50 0.41 78 30
7 H2O/EtOH 100 50 0.34 49 34

8 H2O/EtOH 50 50 0.19 29 34

9 H2O/EtOH 50 100 0.41 88 22
10 H2O/EtOH 50 150 0.32 128 10

As it can be seen from Table 1, OH-/Mg2+ ratio has a strong influence on some surface properties of the product. 
Specifically, where water was used as the solvent for NaOH, there was an increase in the pore width with a 
decrease in OH-/Mg2+ ratio. Where the solvent was a H2O/EtOH 1:1 mixture, both specific surface area and 
average pore diameter was lower than for the corresponding OH-/Mg2+ ratios where the solvent was water only.

Differences could be attributed to the difference in the solubility of magnesium hydroxide between water and 
ethanol thus affecting precipitation speed and thus the cystal shape and size. Further, ethanol molecules could 
be affecting the crystallization process by solvent – crystal surface interactions. However, precipitation times 
were measured for a series of syntheses both in the presence of ethanol and without, and in all cases solid 
material appeared within 2s of mixing the reagents together, thus it is suggested that differences in the surface 
properties were attributable to crystallite shape and size changes.

The contents of Table 2 show the effect of the OH-/Mg2+ ratio while varying the sodium hydroxide concentration 
and keeping the same solution volume in both water and ethanol/water mixtures used as solvents. From Table 
2, it can be seen that at higher OH-/Mg2+ ratio, the surface area increased significantly while the pore volume 
remained approximately the same. This may be due to the particle size of the product being dependent on 
the OH-/Mg2+ ratio. Additionally, altering the OH-/Mg2+ ratio strongly affects the rate at which the magnesium 
hydroxide precipitates and thus influences the surface properties.

Table 2. Pore volume, SA and average pore diameter of magnesium hydroxide precipitated with varying NaOH 
concentration OH-/Mg2+. The magnesium salt and precipitating agent solution volume was kept constant.

Solvent
Mg(NO3)2.6H2O
(cm3)

NaOH
(cm3)

NaOH
Mol/L

Pore 
Volume
(cm³/g)

SBET
(m2/g)

Pore Diameter 
(nm) (DFT)

1 H2O 50 50 1 0.38 70 34

2 H2O 50 50 2 0.45 120 22

3 H2O 50 50 3 0.41 155 11
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4 H 2 O /
EtOH

50 50 1 0.19 29 35

5 H 2 O /
EtOH

50 50 2 0.53 109 31

6 H 2 O /
EtOH

50 50 3 0.40 107 17

Effect of Ionic Strength

In order to examine if the surface properties also depend upon the ionic strength, magnesium hydroxide 
samples precipitated by varying the NaOH concentration were compared to samples precipitated using the 
same NaOH concentration in each synthesis and varying the volume used. This was done in order to compare 
samples prepared from reaction mixtures having the same OH-/Mg2+ ratio but different ionic strength. In all 
cases, samples were precipitated using the same OH-/Mg2+ ratio and water was used as the NaOH solvent. From 
the data in Table 2 it can be seen that the average pore diameter was reduced with increasing OH-/Mg2+ ratio. 
This reduction was more pronounced when the ionic strength increases as seen for OH-/Mg2+ ratio values of 
2 and 3. The effect of the ionic strength can also be related with the increase of the specific surface area with 
increasing ionic strength for OH-/Mg2+ ratio values of 2 and 3. The thermogravimetric data (TGA) for Mg(OH)2 
samples with NaOH concentration of 1-3 M is displayed in Figure 1. The weight loss at 320 °C corresponds to the 
loss of crystallization water and the decomposition of magnesium hydroxide to form crystalline MgO through a 
reorganization of its structure. It is obvious that with increasing precipitating agent concentration this weight 
loss step is being reduced indicating that the tightly bound water is less with increasing NaOH concentration. 
This effect is stronger where 3M NaOH was used. This is also confirmed from the corresponding FTIR spectra 
shown in Figure 2 where the peak at 3695 cm-1 which corresponds to the asymmetric stretch of hydroxyl (-OH) 
groups of Mg(OH)2 is being clearly reduced with the NaOH concentration being increased to 3M. The broad 
band at 3444 cm-1 was assigned to OH…OH2 and H2O…OH2 vibrations. The peak at 1650 cm-1 corresponds to the 
–OH stretching vibrations of water molecules and 1390 cm-1 is attributed to the bending vibration of the Mg-OH 
and -OH bond in crystal structure. 

Fig1. Thermogravimetric analysis of magnesium hydroxide samples precipitated using NaOH 1M (blue), 2M 
(green) and 3M (red).
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Fig 2. Ft-IR spectra of magnesium hydroxide samples precipitated using NaOH 1M, 2M 3M.
In addition to the FTIR measurements, the presence of surface –OH functional groups was shown by deuterium 
oxide exchange, as shown in Figure 3.  From these spectra, it can be seen that the peak appearing at 2715 cm-1 
indicates the amount of the accessible functional –OH groups where there has been a deuterium exchange.  It 
is shown that the number of exchangeable –OH groups is higher with increasing NaOH concentration as it has 
higher deuterium exchange when exposed to heavy water vapor. Therefore, it can be stated that the samples 
prepared using higher NaOH concentration, proportionally, have a larger number of accessible –OH structural 
groups. This can also be justified by the smaller particle size of this sample calculated using the Debye-Scherrer 
equation using X-ray diffraction as shown in Figure 4. 

 Mg exposed to heavy water vapour

cm-1

1000200030004000

T %

2M NaOH
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1M NaOH 

Fig 3. FTIR spectra of magnesium hydroxide samples precipitated using NaOH 1M, 2M and 3M exposed to heavy 
water vapour (deuterium oxide).
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Fig 4. XRD patterns of magnesium hydroxide precipitated using sodium hydroxide 1M, 2M and 3M

The X-Ray Diffraction patterns of the synthesized materials using NaOH 1-3M as precipitating agent are 
illustrated in Figure 4. The particle size calculated with the use of the Debye-Scherrer equation was 19 nm for 1M 
NaOH, 15 nm for 2M and 12 nm for 3M. As expected, the magnesium hydroxide particle size was being reduced 
with increasing precipitating agent concentration. Figures 5 to 7 show SEM micrographs for samples prepared 
from EtOH/H2O solutions, for OH-/Mg2+ ratios from 1:1 to 1:3, indicating that the crystallite size increases with 
increasing ion ratios, without, however, a change in particle shape. Samples used here were uncalcined. Peaks 
at 2θ values of 29.5o και 48o seen where higher concentrations of NaOH were used, were not attributable to 
magnesium hydroxide and were presumably due to the presence of a mixed MgO/Mg(OH)2 phase. The presence 
of this phase may well be partially the cause of some of the changes seen in surface properties. This phase is the 
source of the extra peaks observed at 800 cm-1 in the FTIR spectrum for the same sample.

Fig 5. SEM Micrograph of Mg(OH)2 prepared with 1:1 OH-/Mg2+ ratio.
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Fig 6. SEM Micrograph of Mg(OH)2 prepared with 2:1 OH-/Mg2+ ratio.

Fig 7. SEM Micrograph of Mg(OH)2 prepared with 3:1 OH-/Mg2+ ratio.

Figure 8 shows a characteristic titration curve for the sample of magnesium hydroxide precipitated with 1M 
NaOH solution in water. It can be seen from the intersection of the titration curves of the sample and the blank 
curve that PZC is at pH 10.40. Similar experiments for all other samples showed that for all samples the PZC was 
in the range of 10.40-10.85, well within the accepted error range for this technique.
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Fig 8. Potentiometric titration curve for magnesium hydroxide precipitated with 1M NaOH in water solvent 
showing the PZC at pH 10.40.

Effect Of Ageing
The effect of ageing on the surface properties was examined with a series of samples that were left to stand 
in the mother liquor for 5 minutes. The results are shown in Table 3, and were compared with samples that 
were left to stand in their mother liquor for 24 h previously shown in Table 1.It can be seen that ageing has a 
pronounced effect on the pore properties of the resulting magnesium hydroxide. A shorter ageing period led 
to larger average pore diameter and lower surface areas than samples aged for 24 h. This effect, presumably, 
is due to crystallization and further nucleation processes taking place to a different degree during ageing, and 
have a significant effect upon surface properties. However, ageing appears to have an irregular effect on the 
surface area.

Table 3. Pore volume, SA and average pore diameter of magnesium hydroxide precipitated with varying Na+/
Mg2+ by changing the solutions volume while the concentration of magnesium salt and sodium hydroxide was 
kept constant at 1M. The precipitates were left to stand in mother liquor for 5 min.

Solvent
Mg(NO3)2.6H2O
(cm3)

NaOH
(cm3)

Pore Volume
(cm³/g)

SBET
(m2/g)

Pore Diameter (nm)
(DFT)

1 H2O 50 50 0.33 51 35

2 H2O 50 100 0.36 68 28

3 H2O 50 150 0.30 77 18

4 H2O/EtOH 50 50 0.32 50 35

5 H2O/EtOH 50 100 0.24 67 19

6 H2O/EtOH 50 150 0.14 51 13

Conclusions
The synthesized magnesium hydroxide pore volume, average pore width and specific surface area are strongly 
affected by the precipitation and crystallization conditions. They depend strongly upon the precipitating agent/
magnesium salt ratio, the pH, ionic strength and the ageing regime used. Changing the preparation conditions 
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led to a change in surface texture, which is linked to a change in particle size, but not particle shape as indicated 
by the SEM micrographs shown above. It is intended to further analyse the data presented herein together 
with previous data obtained on calcium analogues by statistical methods used previously by us to extract more 
information from porous solids and other systems [32-35].

We thank the University of Cyprus for financial support of this research, and Ms Andrie Andreou for experimental 
assistance.
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