Introduction

Surgery and perioperative anesthetic maneuvers like intubation and extubation stimulate sympathetic activity with the consequence of an increase in heart rate and blood pressure and – as result – of the risk of myocardial ischemia and supraventricular tachycardias like atrial fibrillation/flutter, especially in patients with preexisting heart disease. The stress of surgery and anesthesia may trigger this myocardial ischemia and these arrhythmias by an increase in myocardial oxygen demand, driven by the sympathetically mediated increase in heart rate and in blood pressure. From a pathophysiological rationale perioperative risk reduction can be achieved by...
suppressing the overshooting sympathetic tone by betablockers. Two approaches can be achieved to reach this goal:

a) The “preventive approach” is to continue betablocker medication in the perioperative setting in patients currently receiving this medication or to start preoperative betablocker medication in patients with myocardial ischemia, high cardiovascular risk load or scheduled for high-risk surgery.\(^1,2\)

b) The “therapeutic approach” is the acute treatment of hypertensive emergency, inadequately high heart rate and supraventricular tachycardias in the perioperative arena by betablockers or other agents. Betablockers displace norepinephrine and epinephrine from β-adrenoreceptors of the heart, thereby attenuating the positive inotropic, chronotropic, bathmotropic and dromotropic effects of the sympathetic and endocrine stimulation. There are several critical stages in time, in which there are these strong hemodynamic changes triggered by the rise in sympathetic tone, depending on the type, duration and course of surgery and anesthesia. They include laryngoscopy, intubation, the first skin incision, the insertion of different surgical instruments, the transection of different anatomical structures (preparation) and other surgical stimuli.

In perioperative emergency situations, due to overshooting sympathetic activity, a short-acting betablocker for dampening of sympathetic activity would be the drug of choice from a pharmacokinetic point of view: the heart rate and blood pressure lowering effect starts immediately after intravenous application of the drug, plasma concentration is kept constant by titrated infusion of the betablocker, and drug action ebbs away very quickly after stopping drug infusion.\(^3\)

Esmolol is such a fast-acting β\(_1\)-selective adrenoreceptor blocker with rapid onset within two minutes, a very short duration of action (elimination half-life: nine min, full recovery after 18 to 30 min), an effective controllability and no relevant adverse events at recommended therapeutic dosages.\(^4,5\)

This systematic review investigates the benefits and harms of esmolol in prevention and treatment of supraventricular tachyarrhythmias and critical rises in blood pressure during anesthesia and surgical interventions.

METHODS

Eligibility criteria

Only randomized controlled trials (RCT) that evaluated efficacy and safety of esmolol were eligible for inclusion in this review. The review considered all trials in three different peri-operative settings:

1. Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias
2. Prevention and treatment of increased blood pressure during intubation and extubation
3. Prevention and treatment of increased blood pressure during surgery or interventions like electroconvulsive therapy

Systematic Search

We searched Medline, Embase and the Cochrane Library until January 2012 for articles published in English and German language (appendix 1). We also searched in registries of on-going trials, hand-searched annual conference proceedings of cardiologic and anesthesia societies (2000-2012), contacted the manufacturer of esmolol (Baxter Germany GmbH) and scanned reference lists of eligible trials. We contacted first authors of eligible trials to obtain further information. In January 2017 we updated our latest results up to 01.01.2017 with an additionally search via PubMed.
Trial selection, classification of strategies and quality assessment

All steps were done by at least two independent authors. We screened all trials identified using the search strategy by title, keywords and abstract and carefully read and discussed full-text versions of potential relevant trials with respect to our inclusion criteria.

We extracted general information of all included trials, trial characteristics including trial design, timing and follow-up, information describing participants, intervention and primary and secondary outcomes per treatment group. Primary endpoints varied in the indications for esmolol use. The success of treatment with esmolol in emergency or perioperative treatment of supraventricular tachyarrhythmias was measured either as decrease in frequency below 100bpm, as reduction in initial heart rate by about 20%, or as conversion to sinus rhythm. This information was extracted and analyzed as primary endpoint. The control and decrease of high blood pressure was the main aim of the treatment with esmolol in participants under general anesthesia and generally during surgery. Therefore, in this setting systolic blood pressure or mean arterial pressure were used as primary endpoint.

Finally, we assessed the internal validity of eligible trials according to the Cochrane Collaboration risk of bias tool. Disagreements were resolved by discussion until consensus was obtained. Risk of bias was judged as high, low or unclear in six specific domains. These domains describe bias in random sequence generation, allocation concealment, blinding of participants, physician and outcome assessors, documentation of incomplete outcome data with causes and selective reporting, baseline comparability between treatment groups and the frequency of cross-over. Publication bias was assessed visually using funnel plots.

Meta-analysis

We used RevMan 5© for the meta-analysis. Effect measures are presented as relative risks (RRs) and mean difference (MD) with their 95% confidence intervals (CI). Outcome was recorded so that a RR greater than one and negative MD indicated a beneficial effect with more successful control of supraventricular tachyarrhythmias or smaller rise in blood pressure in the treatment group with esmolol. If more than one measurement was reported, the treatment effects on the maximal increase were estimated. Intervention arms with different esmolol dosages and control arms with various other effective drugs were pooled.

We used the random-effects model for meta-analysis of the relevant trials. Statistical heterogeneity between trials was quantified into categories of small, moderate, substantial and considerable heterogeneity on the basis of an I² statistic. We decided not to pool studies with considerable heterogeneity (I²>60%). In all of the three settings we differentiated the comparison of esmolol to placebo and to other effective drugs. Patients were allocated pursuant their different interventions specially modes of cardiac surgery or between cardiac healthy and pre-stressed participants.

RESULTS

Results of the search

Having used the above search strategies to identify potentially relevant articles, we identified a total of 1540 records and assessed 257 regarding in- and exclusion criteria. Of these, 221 trials met our pre-defined inclusion criteria. Altogether 16 trials investigated esmolol for treatment of supraventricular tachyarrhythmias and tachycardias, 60 trials during intubation or extubation in operative interventions and 52 trials during surgical interventions. Altogether seven trials were used in more than one topic (figure 1).
Altogether 16 trials evaluated the effect of esmolol for control and treatment of supraventricular tachyarrhythmias and tachycardia (setting one). Information on our pre-defined primary or secondary endpoints were available from 14 trials with a total of 692 participants. Altogether even trials were exclusively performed in the intra- and postoperative setting, four trials describe the use of esmolol independent from the operative setting and three trials included both. Only one trial included more than two treatment arms. Three trials were multicenter trials\(^7\)-\(^9\) and two trials used a cross-over design\(^7\),\(^10\).

Eight trials compared esmolol to placebo\(^7\),\(^10\)-\(^16\), four to diltiazem\(^15\),\(^17\)-\(^19\) and each one to propranolol\(^8\), acebutolol\(^20\), verapamil\(^9\) or ibutilide-monotherapy\(^11\). Some trials included only participants with atrial fibrillation or atrial flutter\(^9\),\(^11\),\(^15\),\(^18\),\(^19\), supraventricular tachyarrhythmias\(^7\),\(^8\),\(^10\),\(^17\) or intra- or postoperative tachycardia\(^12\),\(^13\),\(^13\),\(^14\),\(^16\),\(^20\). Trials were mostly conducted in the USA, as well in Germany, Greece, England and India. All trials included only participants over 18 years with an average age of 60 years with a higher proportion of man (between 32 and 100 %).

Sixty trials evaluated the effect of esmolol under intubation or extubation during operative interventions (setting two). Of them, 50 trials with 3,446 participants reported information on the primary or secondary endpoint and were included into meta-analyses. Participants in 36 trials under went elective surgery. The remaining 14 trials included a variety of surgeries (five with coronary artery bypass grafting). A total of 22 trials had three, nine\(^21\)-\(^29\) had four and one\(^30\) had six treatment arms. Only one trial\(^31\) was a multicenter trial. Forty-two trials compared esmolol to placebo and eight to opioids as alfentanil\(^32\),\(^34\), local anaesthetic drugs as lidocaine\(^35\),\(^37\), hypnotics as propofol\(^35\), calcium channel blockers as nicardipine\(^38\) or \(\alpha\)-receptor-agonistles clonidine\(^32\),\(^39\). Trials were predominantly conducted in Western Hemisphere (USA, Great Britain, Canada, Finland, Switzerland), ten trials were conducted in India, four in Turkey and two in Taiwan. The mean patient age varied between 15 and 85 years. Only two trials included participants under 18 years of age.\(^30\),\(^40\) Altogether 51% of participants were...
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

In the non-cardiac surgeries with controlled hypotension, participants with esmolol were compared to sodium nitroprusside

Risk of bias in included trials

In only 16 of the 221 trials, the method of randomization was reported in the text. Treatment allocation of clusters or participants was described as concealed in 22 trials. A total of 73 trials were double-blinded, outcome assessment was blinded in eight additional trials. In 97 trials, the analysis was done by intention-to-treat. Total numbers of drop-outs were low (<10 %) and their causes were given per group. Pre-planned primary endpoints were adequately reported in 18 trials. Other Risk of bias was evident in 66 trials. These sources of bias included the intake of other interventions that may influence the effect of esmolol as additional antihypertensive or anaesthetic drug86, 9, 17, 18, 21, 23, 31, 32, 34, 55, 74, 84–88 or long-term medication12, 23, 31, 36, 42, 89. Most included trials were conducted as single-center trials with less than 20 participants per intervention group. Especially in trials published before the CONSORT statement90 demographic and clinical characteristics of participants were not adequately described.

Effects of intervention

Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias

In only 16 of the 221 trials, the method of randomization was reported in the text. Treatment allocation of clusters or participants was described as concealed in 22 trials. A total of 73 trials were double-blinded, outcome assessment was blinded in eight additional trials. In 97 trials, the analysis was done by intention-to-treat. Total numbers of drop-outs were low (<10 %) and their causes were given per group. Pre-planned primary endpoints were adequately reported in 18 trials. Other Risk of bias was evident in 66 trials. These sources of bias included the intake of other interventions that may influence the effect of esmolol as additional antihypertensive or anaesthetic drug86, 9, 17, 18, 21, 23, 31, 32, 34, 55, 74, 84–88 or long-term medication12, 23, 31, 36, 42, 89. Most included trials were conducted as single-center trials with less than 20 participants per intervention group. Especially in trials published before the CONSORT statement90 demographic and clinical characteristics of participants were not adequately described.

Effects of intervention

Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias

In only 16 of the 221 trials, the method of randomization was reported in the text. Treatment allocation of clusters or participants was described as concealed in 22 trials. A total of 73 trials were double-blinded, outcome assessment was blinded in eight additional trials. In 97 trials, the analysis was done by intention-to-treat. Total numbers of drop-outs were low (<10 %) and their causes were given per group. Pre-planned primary endpoints were adequately reported in 18 trials. Other Risk of bias was evident in 66 trials. These sources of bias included the intake of other interventions that may influence the effect of esmolol as additional antihypertensive or anaesthetic drug86, 9, 17, 18, 21, 23, 31, 32, 34, 55, 74, 84–88 or long-term medication12, 23, 31, 36, 42, 89. Most included trials were conducted as single-center trials with less than 20 participants per intervention group. Especially in trials published before the CONSORT statement90 demographic and clinical characteristics of participants were not adequately described.

Effects of intervention

Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias

In only 16 of the 221 trials, the method of randomization was reported in the text. Treatment allocation of clusters or participants was described as concealed in 22 trials. A total of 73 trials were double-blinded, outcome assessment was blinded in eight additional trials. In 97 trials, the analysis was done by intention-to-treat. Total numbers of drop-outs were low (<10 %) and their causes were given per group. Pre-planned primary endpoints were adequately reported in 18 trials. Other Risk of bias was evident in 66 trials. These sources of bias included the intake of other interventions that may influence the effect of esmolol as additional antihypertensive or anaesthetic drug86, 9, 17, 18, 21, 23, 31, 32, 34, 55, 74, 84–88 or long-term medication12, 23, 31, 36, 42, 89. Most included trials were conducted as single-center trials with less than 20 participants per intervention group. Especially in trials published before the CONSORT statement90 demographic and clinical characteristics of participants were not adequately described.

Effects of intervention

Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias

In only 16 of the 221 trials, the method of randomization was reported in the text. Treatment allocation of clusters or participants was described as concealed in 22 trials. A total of 73 trials were double-blinded, outcome assessment was blinded in eight additional trials. In 97 trials, the analysis was done by intention-to-treat. Total numbers of drop-outs were low (<10 %) and their causes were given per group. Pre-planned primary endpoints were adequately reported in 18 trials. Other Risk of bias was evident in 66 trials. These sources of bias included the intake of other interventions that may influence the effect of esmolol as additional antihypertensive or anaesthetic drug86, 9, 17, 18, 21, 23, 31, 32, 34, 55, 74, 84–88 or long-term medication12, 23, 31, 36, 42, 89. Most included trials were conducted as single-center trials with less than 20 participants per intervention group. Especially in trials published before the CONSORT statement90 demographic and clinical characteristics of participants were not adequately described.

Effects of intervention

Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias

In only 16 of the 221 trials, the method of randomization was reported in the text. Treatment allocation of clusters or participants was described as concealed in 22 trials. A total of 73 trials were double-blinded, outcome assessment was blinded in eight additional trials. In 97 trials, the analysis was done by intention-to-treat. Total numbers of drop-outs were low (<10 %) and their causes were given per group. Pre-planned primary endpoints were adequately reported in 18 trials. Other Risk of bias was evident in 66 trials. These sources of bias included the intake of other interventions that may influence the effect of esmolol as additional antihypertensive or anaesthetic drug86, 9, 17, 18, 21, 23, 31, 32, 34, 55, 74, 84–88 or long-term medication12, 23, 31, 36, 42, 89. Most included trials were conducted as single-center trials with less than 20 participants per intervention group. Especially in trials published before the CONSORT statement90 demographic and clinical characteristics of participants were not adequately described.
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

Fig 2. Conversion to sinus rhythm and combined endpoint (conversion to sinus rhythm or decreased heart rate) by esmolol vs. placebo in perioperative treatment and emergency therapy of supraventricular tachyarrhythmias

Another group of six trials\(^8,9,15,17-19\) (322 participants) documented a non-significant benefit of esmolol in comparison to other effective drugs with more successful conversions and one trial\(^8\) stated no relevant difference between esmolol and propranolol (table 1). Two\(^9,18\) of the mentioned six trials reported absolute values. Esmolol reduced heart rate from 134±19 bpm to 91±14 bpm compared to diltiazem with a reduction from 144±17 bpm to 79±9 bpm.\(^9\) In comparison to verapamil with reductions from 142±4 bpm to 98±3 bpm, heart rate in the esmolol group decreased from 139±4 bpm to 106±3 bpm.\(^9\)

Table 1. Conversion to sinus rhythm and combined endpoint conversion to sinus rhythm or decreased heart rate (bpm) with subgroup analyses for the comparison of esmolol vs. other drugs. CI – Confidence Interval
Prevention and treatment of increased blood pressure under general anesthesia during intubation and extubation

Summarizing treatment effects on MAP of seven trials including 301 participants during intubation resulted in a lowering of the maximal MAP by 10.1 mmHg (95 % CI 4.8 to 15.4) with esmolol compared to placebo with substantial heterogeneity (I²=56 %) (figure 3). Two of the trials showed a change in absolute values. MAP decreased after administered study drug (before laryngoscopy) from 88±12 mmHg to 77±14 mmHg and from 100±11 mmHg to 76±18 mmHg by esmolol compared to placebo with reduction from 86±14 mmHg to 79±15 mmHg and 94±11 mmHg to 73±12 mmHg.

However, four additional trials with 242 participants compared esmolol to other effective drugs as alfentanil and/or clonidine or lidocaine and stated a higher maximal MAP during intubation in patients treated with esmolol (Mean Difference (MD)19.2 mmHg; 95 % CI 4.8 to 33.7) (table 2).

Table 2. Maximum of mean blood pressure (MAP) (mmHg) with subgroup analyses for the comparison of esmolol vs. other effective drugs during intubation (IT). IV- Inverse Variance; CI – Confidence Interval

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparative drug</th>
<th>Esmolol</th>
<th>Control (comparative drug)</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 MAP during ITN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fernandez-Galinsky 2004</td>
<td>alfentanil + clonidine</td>
<td>114.1</td>
<td>27.6</td>
<td>93.1</td>
</tr>
<tr>
<td>Rajbhandar 2014</td>
<td>lidocaine</td>
<td>118.1</td>
<td>18.2</td>
<td>116.1</td>
</tr>
<tr>
<td>Smith 1991</td>
<td>alfentanil</td>
<td>115</td>
<td>25</td>
<td>88</td>
</tr>
<tr>
<td>Zalunardo</td>
<td>clonidine</td>
<td>133</td>
<td>28</td>
<td>104</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>113</td>
<td>129</td>
<td>19.24 [4.79, 33.69]</td>
</tr>
</tbody>
</table>

A total of 30 trials investigated the efficacy of esmolol on SBP and differentiated between cardiac healthy and cardiac pre-stressed (patients with cardiac disease, high ASA classification, cardiac surgery) participants. Of them, 19 trials with 795 cardiac healthy participants demonstrated a clinically relevant lower maximal SBP (MD 18.3 mmHg; 95 % CI 13.7 to 23.0) with esmolol compared to placebo. This result was stated in 12 trials with 1,121 cardiac pre-stressed participants with a MD of 22 mmHg (95 % CI 15.1 to 28.9) (table 3). One trial in this group described a decrease of maximal SBP by 13±3 mmHg through 100 mg esmolol and by 23±3 mmHg through 200 mg esmolol compared to placebo without any significant change. There is uncertainty on the hemodynamic effects of esmolol compared to lidocaine and alfentanil (table 4).
Table 3: Maximum of systolic blood pressure (mm Hg) during intubation in cardiac healthy and in cardiac pre-stressed participants, with subgroup analyses for comparison of esmolol vs. placebo. IV - Inverse Variance; CI - Confidence Interval

<table>
<thead>
<tr>
<th>Study</th>
<th>Esmolol</th>
<th></th>
<th>Placebo</th>
<th></th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>total</td>
<td>Mean</td>
<td>SD</td>
<td>total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IV, Random, 95%CI</td>
<td></td>
</tr>
<tr>
<td>3.1 cardiac healthy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campagni 1999</td>
<td>134</td>
<td>27</td>
<td>15</td>
<td>139</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Ebert 1990</td>
<td>161.7</td>
<td>24.8</td>
<td>20</td>
<td>189</td>
<td>15.4</td>
<td>12</td>
</tr>
<tr>
<td>Feng 1996</td>
<td>155</td>
<td>26.8</td>
<td>20</td>
<td>196</td>
<td>26.8</td>
<td>20</td>
</tr>
<tr>
<td>Gong 1999</td>
<td>147</td>
<td>25</td>
<td>11</td>
<td>160</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Gupta 2009</td>
<td>148.3</td>
<td>10.2</td>
<td>20</td>
<td>167.9</td>
<td>9.6</td>
<td>20</td>
</tr>
<tr>
<td>Kar 1998</td>
<td>139.3</td>
<td>19.1</td>
<td>20</td>
<td>161.4</td>
<td>20.7</td>
<td>20</td>
</tr>
<tr>
<td>Kindler 1996</td>
<td>130.5</td>
<td>17.5</td>
<td>30</td>
<td>133</td>
<td>23.2</td>
<td>15</td>
</tr>
<tr>
<td>Korpinen 1995</td>
<td>158.6</td>
<td>19.1</td>
<td>29</td>
<td>176.7</td>
<td>12.9</td>
<td>15</td>
</tr>
<tr>
<td>Korpinen 1995a</td>
<td>151</td>
<td>17.2</td>
<td>15</td>
<td>177.8</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Levit 2001</td>
<td>151.1</td>
<td>8.9</td>
<td>16</td>
<td>155.6</td>
<td>17.8</td>
<td>14</td>
</tr>
<tr>
<td>Rathore 2002</td>
<td>155.1</td>
<td>18.8</td>
<td>75</td>
<td>162.5</td>
<td>24.5</td>
<td>25</td>
</tr>
<tr>
<td>Sharma 1995</td>
<td>158.2</td>
<td>21.3</td>
<td>49</td>
<td>175</td>
<td>18.2</td>
<td>24</td>
</tr>
<tr>
<td>Sheppard 1990</td>
<td>153</td>
<td>20.8</td>
<td>30</td>
<td>170</td>
<td>19.5</td>
<td>14</td>
</tr>
<tr>
<td>Singh 2010</td>
<td>158.7</td>
<td>16.8</td>
<td>25</td>
<td>162.4</td>
<td>14.3</td>
<td>25</td>
</tr>
<tr>
<td>Thompson 1997</td>
<td>140.9</td>
<td>24</td>
<td>10</td>
<td>180</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Venkatesha 2002</td>
<td>135.5</td>
<td>6.9</td>
<td>17</td>
<td>150</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Vucevic 1992</td>
<td>151</td>
<td>18</td>
<td>15</td>
<td>188</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>Yuan 1994</td>
<td>159.5</td>
<td>19.4</td>
<td>30</td>
<td>188</td>
<td>15.5</td>
<td>15</td>
</tr>
<tr>
<td>Zargar 2002</td>
<td>139.2</td>
<td>19.1</td>
<td>20</td>
<td>161.4</td>
<td>20.7</td>
<td>20</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>467</td>
<td></td>
<td></td>
<td>319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 cardiac pre-stressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlee 2000</td>
<td>160.7</td>
<td>31.1</td>
<td>34</td>
<td>148.5</td>
<td>28.7</td>
<td>35</td>
</tr>
<tr>
<td>Cucchiara 1986</td>
<td>189.5</td>
<td>44.7</td>
<td>36</td>
<td>220</td>
<td>43.2</td>
<td>37</td>
</tr>
<tr>
<td>Ebert 1989</td>
<td>161.5</td>
<td>32.2</td>
<td>20</td>
<td>186.6</td>
<td>42.9</td>
<td>20</td>
</tr>
<tr>
<td>Gold 1989</td>
<td>128</td>
<td>19.4</td>
<td>15</td>
<td>145</td>
<td>34.9</td>
<td>15</td>
</tr>
<tr>
<td>Harrison 1987</td>
<td>134.6</td>
<td>12.8</td>
<td>15</td>
<td>136.1</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>Helfman 1991</td>
<td>153</td>
<td>22.4</td>
<td>20</td>
<td>176</td>
<td>22.4</td>
<td>20</td>
</tr>
<tr>
<td>Louizoz 2007</td>
<td>119.4</td>
<td>11.5</td>
<td>109</td>
<td>147</td>
<td>20</td>
<td>53</td>
</tr>
<tr>
<td>Miller 1991</td>
<td>150</td>
<td>50</td>
<td>368</td>
<td>167.8</td>
<td>70.3</td>
<td>180</td>
</tr>
<tr>
<td>O’ Dwyer 1993</td>
<td>119.3</td>
<td>21.2</td>
<td>7</td>
<td>164.7</td>
<td>30.4</td>
<td>7</td>
</tr>
<tr>
<td>Parnass 1990</td>
<td>164</td>
<td>8.6</td>
<td>20</td>
<td>200</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Sharma 1996</td>
<td>140.2</td>
<td>8.9</td>
<td>30</td>
<td>173.2</td>
<td>12.4</td>
<td>15</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>694</td>
<td></td>
<td></td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1161</td>
<td></td>
<td></td>
<td>746</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review
Table 4: Maximum of systolic blood pressure (mm Hg) in cardiac healthy and in cardiac pre-stressed participants with subgroup analyses for comparison of esmolol vs. other effective drugs during intubation. IV- Inverse Variance; CI – Confidence Interval

<table>
<thead>
<tr>
<th>Study</th>
<th>Esmolol</th>
<th>Lidocaine</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>total</td>
</tr>
<tr>
<td>4.1 cardiac healthy</td>
<td>151.1</td>
<td>8.9</td>
<td>16</td>
</tr>
<tr>
<td>Levit 2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 cardiac pre-stressed</td>
<td>Esmolol</td>
<td>Alfentanil</td>
<td></td>
</tr>
<tr>
<td>Maguire 2001</td>
<td>154</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>36</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>

Esmolol attenuated the rise of MAP during extubation compared to placebo in two studies with 75 participants (MD -8.1 mmHg (95%CI -18.7 to 2.54) (figure 3) but not significantly. In additional five trials investigated the rise of SBP during extubation. Three trials of them with 210 participants, esmolol lowered compared to placebo maximal SBP after extubation by 14.7 mmHg (95% CI 0.2 to 29.3) (table 5). With respect to lowering of SBP during extubation, no significant difference in the effect of esmolol in comparison to lidocaine, propofol and lidocaine is seen (table 5).

Fig3. Maximal mean blood pressure (MAP) (mmHg) for the comparison of esmolol vs. placebo during intubation and extubation

American Research Journal of Anesthesia
Table 5. Maximum of systolic blood pressure (mmHg) with subgroup analyses for the comparison of esmolol vs. placebo and esmolol vs. other effective drugs during extubation (ET). IV - Inverse Variance; CI – Confidence Interval

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparative drug</th>
<th>Esmolol Mean</th>
<th>SD</th>
<th>total</th>
<th>Control (comparative drug) Mean</th>
<th>SD</th>
<th>total</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 SBP during ET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IV, Random, 95% CI</td>
</tr>
<tr>
<td>Arar 2007</td>
<td>placebo</td>
<td>144.3</td>
<td>18.1</td>
<td>40</td>
<td>166.7</td>
<td>17.2</td>
<td>40</td>
<td>-22.40 [-30.14, -14.66]</td>
</tr>
<tr>
<td>Kurian 2001</td>
<td>placebo</td>
<td>115</td>
<td>3.89</td>
<td>31</td>
<td>119.1</td>
<td>3.3</td>
<td>37</td>
<td>-4.10 [-5.83, -2.37]</td>
</tr>
<tr>
<td>Schäffer 1994</td>
<td>placebo</td>
<td>160.2</td>
<td>25.5</td>
<td>40</td>
<td>180</td>
<td>30.4</td>
<td>22</td>
<td>-19.80 [-34.76, -4.84]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>111</td>
<td></td>
<td></td>
<td>99</td>
<td></td>
<td></td>
<td>-14.71 [-29.25, -0.17]</td>
</tr>
<tr>
<td>Chhabra 2003</td>
<td>lidocaine + propofol</td>
<td>133</td>
<td>17.6</td>
<td>30</td>
<td>138.4</td>
<td>16</td>
<td>60</td>
<td>-5.40 [-12.89, 2.09]</td>
</tr>
<tr>
<td>Kovac 2007</td>
<td>nicardipine</td>
<td>147.5</td>
<td>24.9</td>
<td>11</td>
<td>140</td>
<td>16.6</td>
<td>11</td>
<td>7.50 [-10.18, 25.18]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>152</td>
<td></td>
<td></td>
<td>170</td>
<td></td>
<td></td>
<td>-9.38 [-18.16, -0.60]</td>
</tr>
</tbody>
</table>

Prevention and treatment of increased blood pressure during surgery or surgery like interventions

The efficacy of esmolol was compared during cardiac and non-cardiac surgeries, non-cardiac surgery with controlled hypotension and electroconvulsive therapy in 46 trials with a total of 1,647 participants.

During cardiac surgery, eight trials with 241 participants stated lower maximal MAP values with esmolol compared to placebo (MD -4.1 mmHg; 95% CI -7.1 to -1.0). There is uncertainty whether esmolol is more efficient than other effective drugs as diltiazem or acebutolol (table 6).

A total of four trials with 130 participants having cardiac surgery predominantly showed a lower maximal SBP in the esmolol group in comparison to the placebo group with considerable heterogeneity between groups. Three additional trials with 75 participants having cardiac surgery stated a small, clinically non-relevant benefit between patients treated with esmolol and sodium nitroprusside (table 7).

During non-cardiac surgery, six trials with 290 participants demonstrated considerable heterogenic treatment effects on maximal MAP between esmolol and placebo (MD -1.8 mmHg; 95% CI -23.9 to 0.34) with considerable heterogeneity between trials (I^2=95 %). Five trials, including a total of 292 participants, compared esmolol to other effective drugs with similar maximal MAP (MD 1.8 mmHg; 95% CI 0.3 to 3.3) (table 6).
Table 6. Maximum of mean blood pressure (mmHg) with subgroup analyses for the comparison of esmolol vs. other effective drugs during cardiac and non-cardiac surgery and during electroconvulsive therapy. IV- Inverse Variance; CI – Confidence Interval

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparative drug</th>
<th>Esmolol</th>
<th>Control (comparative drug)</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>total</td>
<td>Mean</td>
</tr>
<tr>
<td>6.1 cardiac surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chauhan 1999</td>
<td>diltiamzem</td>
<td>113</td>
<td>14</td>
<td>30</td>
<td>98</td>
</tr>
<tr>
<td>Kling 1990</td>
<td>acebutolol</td>
<td>74</td>
<td>10</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>6.2 non-cardiac surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amr 2011</td>
<td>natrium nitro-prussid + atenolol</td>
<td>69</td>
<td>0.6</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>Doblar 1996</td>
<td>alfentanil + thiopental + xylocaine</td>
<td>99</td>
<td>18.97</td>
<td>10</td>
<td>103</td>
</tr>
<tr>
<td>Kol 2009</td>
<td>dexametomidine</td>
<td>65</td>
<td>5</td>
<td>35</td>
<td>63.75</td>
</tr>
<tr>
<td>Shah 1993</td>
<td>natriumnitro-prussid</td>
<td>59</td>
<td>2</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>van de Berg 1997</td>
<td>magnesium-sulfate+ lidocaine+ nitro-glycerine</td>
<td>85</td>
<td>9</td>
<td>20</td>
<td>86.67</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>99</td>
<td></td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>139</td>
<td></td>
<td></td>
<td>233</td>
</tr>
</tbody>
</table>

Seven trials with 263 participants compared the efficacy of esmolol with placebo on the maximal SBP and demonstrated clinically relevant advantages of esmolol with substantial heterogeneity between trials ($I^2=91\%$) (table 7). Finally, five trials including 215 participants stated no clinically relevant differences between esmolol and other effective drugs on maximal SBP (MD 2.1 mmHg; 95% CI -1.4 to 5.7) (table 7).

During non-cardiac surgery with controlled hypotension, four trials including 104 participants stated comparable effects on maximal MAP values between esmolol and other effective treatment (MD -0.46 mmHg; 95% CI -3.2 to 2.3) with substantial heterogeneity between trials ($I^2=65\%$). Three trials with 74 participants compared the efficacy of esmolol with other effective drugs and showed lower maximal SBP (MD -3.8 mmHg; 95% CI -6.9 to -0.7) by esmolol with small heterogeneity between trials ($I^2=0\%$) (table 7).
electroconvulsive therapy, eight trials \cite{75, 77-83} with 371 participants demonstrated clinically relevant lower SBP under esmolol compared to placebo with considerable heterogeneity between trials ($I^2=87\%$). No relevant differences were found in four trials \cite{78, 80, 81, 83} with 192 participants in comparison of esmolol with other effective drugs (MD 2.7 mmHg; 95% CI -3.1 to 8.5) (table7).

Table 7. Maximum of systolic blood pressure (mmHg) with subgroup analyses for the comparison of esmolol vs. placebo and esmolol vs. other effective drugs during cardiac and non-cardiac surgery and during electroconvulsive therapy. IV- Inverse Variance; CI – Confidence Interval

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparative drug</th>
<th>Esmolol</th>
<th>Control (comparator drug)</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>total</td>
</tr>
<tr>
<td>7.1 cardiacsurgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Bruijn 1987</td>
<td>placebo</td>
<td>115</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Harrison 1987</td>
<td>placebo</td>
<td>110.5</td>
<td>10.45</td>
<td>15</td>
</tr>
<tr>
<td>Reves 1990</td>
<td>placebo</td>
<td>134</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Tempe 1999</td>
<td>placebo</td>
<td>124</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Dittrich 2003</td>
<td>natriumnitroprussid</td>
<td>130.5</td>
<td>33.87</td>
<td>6</td>
</tr>
<tr>
<td>Gray 1985</td>
<td>natriumnitroprussid</td>
<td>136</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Gray 1987</td>
<td>natriumnitroprussid</td>
<td>136</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 non-cardiacsurgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayuso 1997</td>
<td>placebo</td>
<td>83</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Gold 1989</td>
<td>placebo</td>
<td>117</td>
<td>23.24</td>
<td>15</td>
</tr>
<tr>
<td>Korpinen 1997</td>
<td>placebo</td>
<td>113</td>
<td>13.42</td>
<td>20</td>
</tr>
<tr>
<td>Korpinen 1998</td>
<td>placebo</td>
<td>101</td>
<td>13.42</td>
<td>20</td>
</tr>
<tr>
<td>Sandler 1990</td>
<td>placebo</td>
<td>192</td>
<td>26.68</td>
<td>30</td>
</tr>
<tr>
<td>van de Berg 1997</td>
<td>placebo</td>
<td>115</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Whirley-Diaz 1991</td>
<td>placebo</td>
<td>123.67</td>
<td>22.57</td>
<td>33</td>
</tr>
<tr>
<td>Ayuso 1997</td>
<td>labetalol</td>
<td>83</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Coloma 2001</td>
<td>remifentanil</td>
<td>106</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>Doblar 1996</td>
<td>alfentanil+thiopental+xylocaine</td>
<td>139</td>
<td>25.3</td>
<td>10</td>
</tr>
<tr>
<td>Singh 1992</td>
<td>labetalol</td>
<td>171</td>
<td>3.4</td>
<td>11</td>
</tr>
<tr>
<td>van de Berg 1997</td>
<td>magnesium-sulfate+lidocaine+nitro-gycerine</td>
<td>115</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

<table>
<thead>
<tr>
<th>Subtotal (95% CI)</th>
<th>Mean</th>
<th>SD</th>
<th>total</th>
<th>Mean</th>
<th>SD</th>
<th>total</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boezaart 1995</td>
<td>71</td>
<td>11.38</td>
<td>10</td>
<td>76.1</td>
<td>16.25</td>
<td>10</td>
<td>-5.10 [-17.40, 7.20]</td>
</tr>
<tr>
<td>Ornstein 1988</td>
<td>80.7</td>
<td>4.3</td>
<td>15</td>
<td>83.2</td>
<td>6.3</td>
<td>10</td>
<td>-2.50 [-6.97, 1.97]</td>
</tr>
<tr>
<td>Ornstein 1991</td>
<td>82</td>
<td>6</td>
<td>10</td>
<td>87.05</td>
<td>6.55</td>
<td>19</td>
<td>-5.05 [-9.79, -0.31]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>35</td>
<td>28</td>
<td>13</td>
<td>190.5</td>
<td>32</td>
<td>13</td>
<td>-15.50 [-38.61, 7.61]</td>
</tr>
</tbody>
</table>

| Setting one: Perioperative treatment and emergency therapy of supraventricular tachyarrhythmias |

Nine trials on emergency or perioperative treatment of supraventricular tachyarrhythmias reported hypotension in 63 out of 288 participants (21.8%) treated with esmolol compared to 24 out of 156 participants (15.4%) treated with other effective drugs and in one out of 101 participants treated with placebo. Results from five trials reported bradycardia in one out of 149 participants (0.7%) with esmolol compared to five out of 102 participants (5%) with other effective drugs and no participant of the placebo groups. No deaths in any of the patients relating to esmolol treatment were reported.
Setting two: Prevention and treatment of increased blood pressure during intubation and extubation

A total of 14 trials on prevention and treatment of increased blood pressure under general anesthesia during intubation and extubation reported hypotension in 119 out of 647 participants (18%) treated with esmolol compared to 2 out of 20 (10%) participants treated with another effective drug (alfentanil) and 34 out of 399 (9%) participants treated with placebo. Bradycardia was observed in nine trials. It was reported in 12 out of 536 (2%) participants treated with esmolol compared to 6 out of 352 (1.7%) participants treated with placebo. In five trials hypotension and bradycardia had been treated for stabilization. Change to other effective drugs for lowering blood pressure or heart rate were reported in eleven studies in which placebo treated participants got more times an intervention. The used drugs were nitroglycerine, glyceroltrinitrate, clonidine, nifedipine, nicardipine, β-blocker und thiopental. Three trials reported myocardial ischemia in 5 out of 98 (5%) participants treated with esmolol and 15 out of 94 (16%) participants treated with placebo.

Setting three: Prevention and treatment of increased blood pressure during surgery or interventions like electroconvulsive therapy

Hypotension was observed in two trials during cardiac surgery, in five trials during non-cardiac surgery and in three trials during electroconvulsive therapy. During cardiac surgery, hypotension was reported in 2 out of 32 (6%) participants treated with esmolol and 18/32 (56%) participants treated with other effective drugs. During non-cardiac surgery, hypotension was reported in 7 out of 159 (4%) participants treated with esmolol, but none of 34 participants treated with other effective drugs and none of 88 participants treated with placebo suffered from hypotension. Bradycardia was observed in five trials during non-cardiac surgery and in three trials on electroconvulsive therapies with no observation of bradycardia in all participants. Myocardial ischemia was seen in five trials during cardiac surgery. From these 14% (10 out of 72) of esmolol treated participants in comparison to 24% (20 out of 82) of placebo treated participants developed myocardial ischemia. One trial reported a participant with myocardial infarction in the placebo group during cardiac surgery.

DISCUSSION

Cardiovascular risk in the perioperative setting

Anesthesia is associated with intraoperative and postoperative hemodynamic risks especially hypertension and tachycardia through intubation, pain, extubation, time of incision and in the postoperative setting as well as hypotension after induction of anesthesia until time to incision and before end of surgery.

Hypertension and tachyarrhythmia as intra-and postoperative risk factors

Patients with chronic hypertension and consecutive coronary artery disease have a higher risk in morbidity and mortality in connection with neurosurgery, aortic- and especially cardiac surgery. But also noncardiac surgery is associated with cardiac complications like myocardial ischemia in 25% of patients. Preoperative hypertension is a stronger risk factor for intraoperative hypertension and tachycardia and is associated with increased risk of death after noncardiac surgery in comparison to normotensive patients (OR 3.8). Also postoperative hypertension leads to higher risk for bleeding, myocardial infarction and cerebrovascular events in cardiac and noncardiac patients especially in those with preoperative hypertension.
For these reasons, it is important that patients with chronic hypertension are well controlled, risks for intra-and postoperative hypertension are avoided, and in case of urgencies patients are rapidly and effectively treated, however, without inducing iatrogenic hypotension108.

Prevention and Management of intra- and postoperative hemodynamic instabilities

For the "preventive approach" avoiding hypertension, myocardial ischaemia and arrhythmias in the perioperative setting, a large number of randomized controlled trials form the basis for given guideline recommendations.1

In contrast emergency treatment of the individual patient with acute perioperative hypertensive crisis, inadequate rise in sinus rhythm or supraventricular tachyarrhythmia, especially atrial fibrillation/flutter, is not based on the quantitative results of large randomized trials, but "only" in a qualitative manner on the rationale that these situations bear the risk of acute coronary syndrome, stroke or death. Treatment of perioperative urgencies through intubation, extubation and pain by surgical incision could be handled with beta blockers, ACE inhibitors, calcium channel blockers and vasodilators107, 108. Tachycardic perioperative urgencies are reflected better by an acutely critically ill tachycardic patient at the ICU than by patients with chronic coronary heart disease or systolic heart failure with an inadequately high heart rate > 70-75 bpm109. ICU patients with >95 bpm for > 12 hrs sustain much more major cardiac events than those in the control group (49 % vs. 13 %)109. In 89 critically ill ICU patients with multiple organ dysfunction syndrome (MODS) of cardiac or septic origin, those patients with ≥ 90 bpm have a much higher 28-day mortality (HR 2.30) than those with < 90 bpm110.

In 77 critically ill ICU patients with septic shock, the high heart rate of ≥95 bpm could be effectively reduced by a 4-day period of intravenous esmolol treatment, with a mean reduction of 18 bpm111, correlating with a lower 28-day mortality (49.4 % vs 80.5%; p<0.001). These findings argue for a prognostic relevance of an inadequately high heart rate in the acutely critically ill ICU patient and for a protective effect of dampening the overshooting sympathetic activity - triggering the rise in heart rate - by short term use with the betablocker esmolol. Similar data reflecting high blood pressure values under these conditions are not available yet.

Postoperative hypertension can be prevented causally by normovolemia, normothermia and by avoidance of hypoxia, pain and symptomatically by antihypertensive drugs. Aim of all treatment options is the protection of organ function and a balance between the risk from hypertension and hypoperfusion through antihypertensive treatment107, with the ideal agent being rapid acting, safe, inexpensive, convenient, predictable and easy to titrate108.

Esmolol in the perioperative arena

With respect to the use of esmolol in treating overshooting sympathetic activity in surgical patients, our review reports a large number of randomized, though relatively small clinical trials which demonstrate the effectiveness in lowering blood pressure, reducing heart rate and converting supraventricular tachyarrhythmias – especially atrial fibrillation/flutter - in sinus rhythm. In comparison to placebo, esmolol is significantly more effective in all surgical scenarios tested (figures 2, 3, table 3, 5, 7), with lowering blood pressure and heart rate as well as conversion of supraventricular tachycardias into sinus rhythm (figure 2). The latter scenario is generalizable from the perioperative arena to the emergency setting in general. With respect to non-cardiac surgery, our data are in agreement with the meta-analysis of Yu et al (2011)112, providing convincing evidence for esmolol as effective agent to reduce overshooting sympathetic tone in the perioperative arena. But for the price of: an increased incidence of unplanned hypotension (OR 2.1), but not an increased incidence of significant bradycardia (OR 1.2); interestingly, esmolol decreased the frequency of myocardial ischemia in the 7 evaluating studies (OR 0.17). Our trials reported myocardial ischemia only in cardiac or vascular surgery with cardiac pre-stressed participants (esmolol 9 % vs. placebo 20 %).

1 Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

108 American Research Journal of Anesthesia
Comparing esmolol with other beta-blockers and other agents

Considering current guidelines\(^1\), there are recommendations on the use of beta-blocker for perioperative prophylaxis and treatment of blood pressure, heart rate and frequency control of supraventricular arrhythmias as atrial fibrillation. In clinical practice, esmolol is one of the agents used for these indications, with others being further i.v.-beta-blockers as metoprolol, propranolol, atenolol and the new short-acting landiolol\(^113, 114\), transdermal clonidine, ACE inhibitors as enalapril, calcium channel blocker as verapamil and diltiazem, and in case of severe hypertension\(^107, 108\) labetalol, nitroglycerine and sodium-nitroprusside.

Comparison to beta-blockers

Beta-blockade like metoprolol and bisoprolol protect development of myocardial ischemia during vascular surgery without adverse events like stroke and hypotension\(^115\). In our meta-analysis, in the trials comparing esmolol with other betablockers, no significant difference in lowering heart rate and blood pressure could be detected, not surprising in view of the identical pharmakodynamic properties. Due to the excellent controllability of the esmolol application, less side effects like hypotension and symptomatic bradycardia could have been expected, but – interestingly - this was also not the case. For landiolol, another short-acting betablocker, with a half-life of 3 minutes and 8-times higher\(\beta\)_1-selectivity as esmolol, a statistically more effective termination of postoperative atrial fibrillation has been described\(^116\).

Comparison to other drugs

Esmolol has also been compared in its effectiveness with other non-betablocker (see "Results") without remarkable difference considering blood pressure and heart rate lowering. The use of these substances could be of interest when only heart rate but not blood pressure should be lowered in hypotensive tachycardic patients or only blood pressure but not heart rate should be lowered in hypertensive bradycardic patients. The pacemaker channel inhibitor ivabradine selectively reduces heart rate\(^117\) and the new antiarrhythmic agent vernakalant\(^118\) is now an alternative for cardioversion of arterial fibrillation/flutter\(^119\).

Perioperative beta-blocker action beyond heart rate and blood pressure?

Härkänen et al (2015)\(^120\) evaluated postoperative pain in 11 randomized clinical trials including 701 adults treated with esmolol (ten trials) or propranolol (one trial). Overall both beta-adrenergic antagonists demonstrated an opioid-sparing efficacy and patients needed less rescue analgesics (32 to 50 % in esmolol group and 72 % in propranolol group) compared to placebo accompanied by lower pain ratings and longer time till rescue drug was given\(^120\). In patients undergoing intracranial surgery, Asouhidou et al (2015)\(^121\) reported that esmolol showed hemodynamic stability and did not influence bispectral index (BIS) on his own. However, taken together all available study results\(^32, 92, 93, 121\), the effect of esmolol on BIS needs further clarification.

Reduction of heart rate and blood pressure or blockage of overshooting sympathetic tone?

Finally, do we need to treat only exaggerated heart rate and blood pressure by any specific agent or must we treat specifically the overshooting sympathetic activity by betablocker in the perioperative arena to avoid complications? Presently, we cannot answer this question, as our review found only trials dealing with treatment of overshooting heart rate and blood pressure and of supraventricular tachyarrhythmias, but not dealing with the prognostic consequences of this hemodynamic derangement. What we know from clinical practice and the mentioned trials above is that intra- and postoperative hemodynamic instabilities are related to cardiovascular complications\(^108\). Specially preoperative hypertension is associated with higher risk of postoperative death\(^107, 108\). However, a first step in answering this question will come from heart rate lowering treatment of critically ill ICU patients and inadequately high heart rates either by the betablocker esmolol\(^111\) or the selective pacemaker...
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

channel (funny channel) inhibitor ivabradine. Comparing both studies, esmolol was more effective in heart rate lowering than ivabradine and only esmolol improved hemodynamics and reduced morbidity and mortality. Therefore, dampening the overshooting sympathetic activity to suppress heart rate might be better than pure heart rate reduction in MODS/septic shock patients with inadequately high heart rate, and – as might be speculated - possibly also in patients in the perioperative arena.

LIMITATIONS

The quality of evidence in this review was ranged with GRADE-system and limitations are attributable to the limitations of the single trials included in the meta-analysis, inconsistency of treatment effects, imprecision and resulting broad 95% CI and potential publication bias. Inconsistency is caused by differences in sample size, patient characteristics, resulting surgeries and study design. Some trials include patients with pre-existing conditions as hypertension and cardiac long-term medication while others defined these conditions as exclusion criteria. Premedication, especially opioids, cardiac active drugs and different kinds and doses of anesthetics, should be considered critically. All included studies were randomized and most double-blind, some trials used cross-over design with possible interactions.

CONCLUSION

In summary esmolol is an effective drug for intraoperative reduction and prevention of increased heart rate, blood pressure and tachyarrhythmia in patients with cardiac risk with no differences to other beta-blockers. Side effects can be minimized through slow and careful titration of esmolol. Specifically, for intraoperative urgencies the use of esmolol in patients with cardiac risk should be considered. In emergency medicine esmolol is already included for treatment of tachycardia or tachyarrhythmia. Esmolol seems to be very attractive because of the additive characteristics which should be part of future trials with large number of participants and high methodic quality. Considering other active drugs esmolol should be compared to new generation of cardio active drugs.

ACKNOWLEDGMENTS

The authors wish to thank Prof. Dr. rer. nat. Johannes Haerting, Department of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University, Halle (Saale), Germany and Prof. Dr. med. Michael Bucher, Department of Anesthesiology and Surgical Intensive Care Medicine, University Hospital Halle (Saale), Germany for their scientific guidance.

REFERENCES

Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

APPENDIX

Search Strategy

CENTRAL on The Cochrane Library

#1 Esmolol
#2 tachyarrythmias
#3 Arrhythmias, Cardiac
#4 Emergencies/
#5 urgencies
#6 Intraoperative complications
#7 Postoperative complications
#8 Intubation, Intratracheal/ae
#9 Laryngoscopy
10 hypertensive crisis.mp
11 hypertension.mp
12 rate pressure product
13 (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12)
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

Medline (on Ovid)

1 Esmolol.mp
2 tachyarrhythmias.mp
3 Arrhythmias, Cardiac.mp. or Arrhythmias, Cardiac/
4 Emergencies.mp. or Emergencies/
5 Adult/ or Hypertension/ or Emergencies/ or Middle Aged/ or urgencies.mp. or Emergency Service, Hospital/ or Aged/
6 Intraoperative complications.mp. or Intraoperative Complications/
7 Postoperative complications.mp. or Postoperative Complications/
8 Intubation, Intratracheal/ae
9 Laryngoscopy.mp. or Laryngoscopy/
10 hypertensive crisis.mp
11 hypertension.mp
12 Middle Aged/ or Oxygen Consumption/ or Coronary Disease/ or Calcium Channel Blockers/ or Hypertension/ or Angina Pectoris/ or Heart Rate/ or Myocardium/ or Blood Pressure/ or rate pressure product.mp. or Adult/
13 or /(2-12)
14 1 and 13

Embase (on Ovid)

1 Esmolol
2 Milrinone/ or Supraventricular Tachycardia/ or Adverse Drug Reaction/ or Heart/ or Heart Arrhythmia/ or Heart Infarction/ or Amiodarone/ or Tachycardia/ or Heart Ventricle Tachycardia/ or tachyarrhythmias. mp. or Drug Therapy/
3 Bradykinin/ or Diuretic Agent/ or Endothelin B Receptor Antagonist/ or Dipeptidyl Carboxypeptidase Inhibitor/ or Ramipril/ or Antiarrhythmic Agent/ or Heart Muscle Ischemia/ or Heart Ventricle Arrhythmia/ or Heart Arrhythmia/ or Arrhythmias, Cardiac.mp. or Heart Infarction/
4 Emergencies/
5 urgencies
6 Intraoperative complications.mp. or Peroperative Complication/
7 Postoperative complications.mp. or Postoperative Complication/
8 Intubation, Intratracheal/ae
9 Laryngoscopy.mp. or Laryngoscopy/
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

10 hypertensive crisis.mp
11 hypertension.mp
12 Hypertension/ or Blood Pressure/ or Losartan/ or Systolic Blood Pressure/ or Enalapril/ or Diazepam/ or Verapamil/ or Metoprolol Succinate/ or Heart Rate/ or rate pressure product.mp. or Amlodipine Besylate/
13 or /2-12
14 (1 and 13)
15 Randomized Controlled Trial/
16 exp controlled clinical trial/
17 Randomized Controlled Trial/
18 random allocation.af.
19 double blind method$.pt,af.
20 single-blind method$.af.
21 cross-over.mp.
22 Treatment Outcome/ or Scoring System/ or Outcomes Research/ or propensity score.mp. or Statistical Analysis/
23 or / 15-22
24 exp ANIMAL
25 „not human$“.af.
26 25 or 24
27 23 not 26
28 clinical trial$.pt,af.
29 clinical trial$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name]
30 (clin$ adj25 trial$).ti,ot,ab.
31 ((singl$ or doubl$ or trebl$ or tripl$) adj (blind$ or mask$)).ti,pt,ot,ab.
32 placebo$.af.
33 random$.pt,af.
34 research design$.af.
35 or / 28-34
36 35 not 26
37 36 not 27
Blood Pressure, Heart Rate and Arrhythmia Control in the Perioperative Setting by the Short-Acting Betablocker Esmolol – A Review

38 comparative stud$.af.
39 evaluat$ stud$.af.
40 follow up stud$.af.
41 prospective stud$.pt,af.
42 (control$ or prospectiv$ or volunteer$).ti,ot,ab.
43 or / 38-42
44 43 not 26
45 44 not (27 or 37)
46 27 or 37 or 45
47 46 and 14

**Copyright © 2018 Anna-Maria Burgdorff*, Ann-Kristin Feudlinske, Astrid Förster, Karl Werdan, Susanne Unverzagt, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.