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Abstract: Developing high-yielding wheat varieties under low-N requires adequate information on the nature of 

combining ability of available genotypes and the types of gene actions involved in the expression of grain yield 

and quality traits under such low-N stress. The objective of present study was to get information about 

performance and general (GCA) and specific (SCA) combining ability variances and effects for grain yield and 

quality traits of wheat to help its improvement under low-N environment. Two experiments were conducted 

during two seasons, the 1st under high-N (75 kg N/fed) and the 2nd under low-N (0 kg N/fed) using a randomized 

complete block design with three replications. The entries included six Egyptian wheat genotypes differing in 

low-N tolerance and their F2 diallel crosses (without reciprocals). Data analyzed across seasons indicated that 
L25, L26 and L27 had high values of grain yield and quality traits and showed the best GCA effects for these 

traits. Under low-N, the best F2 crosses in per se performance and in SCA effects were L25 x L27, L25 x L26 and 

L26 x G168.  Mean squares due to both GCA and SCA were significant under both low-N and high-N for all 

studied traits, but the magnitude of GCA was greater than SCA, indicating that additive is more important than 

non-additive genetic variance in controlling the inheritance of all studied grain yield and quality traits. The results 

indicated that under low-N and high-N, the mean performance   of a given parent   is an indication of its general 

combining ability and the mean performance of a given F2 cross is an indication of its specific combining ability 

effects for all studied grain yield and quality traits.  
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I. INTRODUCTION 

Wheat (Triticum aestivum L.) is one of the oldest and most important cereal crops in Egypt. Although wheat 

productivity in Egypt has increased during the past years, wheat production supplies only 45% of its annual 

domestic demand. Egypt still is one of the largest countries that import wheat. Wheat imports in 2011 were about 

9.8 million tons, with a cost of about 3.2 billion US$ (FAOSTAT, 2011). Therefore, Egypt needs to make a great 

effort to increase wheat production. Extending wheat growing outside the Nile Valley is the first effort toward 

overcoming wheat problems. However, most of the area outside the Nile Valley suffers from some abiotic stresses, 

the most important are nutrient deficiency and low water holding capacity; therefore increasing tolerance of wheat 

genotypes to such stresses, is one of the cheapest methods to spread growing wheat in these areas. 

Crop performance is a function of the genotype and the nature of the production environment (Cooper and Byth, 

1996). Genotypic differences for grain yield observed in the absence of stress are largely unrelated to differences 

observed in the presence of severe stress (Banziger et al., 1997; Ceccarelli, 1989; Ceccarelli and Grando, 1991; 
Ceccarelli et al., 1992 and Mosisa, 2005). This may indicate that different physiological mechanisms are associated 

with high yield in favorable conditions and high yield in unfavorable conditions (Blum, 1997; Ccccarelli, 1996). 

Variation for quantitative characters is under the control of many genes and the contribution of the genes can differ 

among environments (Basford and Cooper, 1998; Delacy et al., 1996 and Meseka et al.,2006). This conditional 

contribution of genes is the basis of genotype-by-environment (G x E) interactions. 

Low-N stress is among the major abiotic stresses causing yield reductions in wheat (Lafitte and Edmeades, 1994; 

Beck et al., 1996; Banziger et al., 2000 and Banziger and Meyer, 2002). Understanding the genetic basis of hybrid 

performance under this stress is crucial to the design of appropriate breeding strategies (Hallauer and Miranda, 1988 

and Betran et al., 2003 a,b). Although improved N efficiency has been a desirable goal of wheat breeders, the 
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information available regarding the relative contribution of general combining ability (GCA) effects and specific 

combining ability (SCA) effects for different traits related to grain yield under low-N is limited (Dass et al., 1997 

and Gorny et al., 2011). Below et al. (1997) evaluated hybrids from a diallel mating design under high and low N 

availability (where low-N stress results in approximately 35% yield reduction) in a temperate environment and 

reported that the mean squares for general combining ability (GCA) and specific combining ability (SCA) were 

significant for all traits measured at both levels of N. They concluded that, based on the magnitude of the difference 
between GCA and SCA mean squares, the majority of the genetic effects were associated with GCA, indicative of 

additive genetic effects. Kling et al. (1997) conducted a diallel experiment in the tropical lowlands of West Africa 

for one season under high and low N conditions and reported that GCA for grain yield was significant under both N 

treatments while SCA was only significant under high-N. However, non-additive gene effects under low-N were 

common in other studies. Betran et al. (2003a) evaluated diallel crosses under high-N and low-N for one season and 

reported that under low-N, non additive genetic effects were more important for grain yield than the additive genetic 

effects. A significant crossover interaction was observed between the GCA of lines under low and high N 

conditions. Similar results were reported by Lafitte and Edmeades (1995). Banziger et al. (1997) found that N stress 

severity influenced genotype-by-N stress interactions. In addition to other environmental effects and type of families 

used, the contradictory results of different researchers may, therefore, be due to differences in the N stress level 

(testing environment) under which the genotypes were evaluated and/or genotypic difference among sets of 

genotypes included in the studies. A detailed study of the relative importance of GCA effects and SCA effects under 
contrasting N environments is crucial to generate precise information and design breeding strategies that serve the 

interests of resource-poor farmers (Banziger et al., 2000). 

Gorny et al. (2011) reported that the soil N-treatments imposed had a substantial influence on gene actions 

responsible for the grain yield and N efficiency components and modes of inheritance. They found that under high 

N-fertilization, the grain yield components were inherited in a manner favorable for wheat selection (preponderance 

of additive effects), while  the enhanced contribution of non-additive gene effects and increased dominance under N-

limited conditions could impede wheat selection to improve the N efficiency and adaptation to less luxurious 

fertilization regimes. They concluded that selection methods that eliminate masking non-additive influences and 

take advantage of the additive variance should be employed to improve these traits. 

This study aimed to determine per se performance of six Egyptian wheat parents and their 15 F2 diallel crosses, 

estimate the relative importance of their GCA and SCA under contrasting N environments and investigate the 
relationship between per se performance and combining ability of parents and F2 crosses. 

II. MATERIALS AND METHODS 

This study was carried out at Giza Research Station  of the Agricultural Research Center (ARC), Giza Egypt (30° 

02'N latitude and 31° 13'E longitude with an altitude of 22.50 meters above sea level), in 2005/2006 season and at 

Noubarya  Research Station of the ARC, Noubarya, Egypt (30°66'N latitude and 30°06'E longitude with an altitude 

of 15.00 meters above sea level), in 2006/2007, 2007/2008 and 2008/2009 seasons. 

2.1. Materials: 

Six bread wheat genotypes (Triticum aestivum L.) were chosen for their divergence in tolerance to low nitrogen, 

based on previous field screening carried out by Wheat Res. Dept., Field Crops Res. Inst., ARC, Egypt (Table 1). 

Table1. Designation, pedigree and tolerance to low-N of the six promosing lines and Egyptian cultivars of wheat 

used for making diallel crosses of this study 

Designation Pedigree Tolerance to low nitrogen 

Line 25(L25)  MYNA/VUL//TURACO/3/TURACO/4/Gem7. Tolerant 

Line 26(L26)  MUNIA/CHTO//AMSEL. Tolerant 

Line27(L27)  Compact-2/Sakha//Sakha61. Tolerant 

Gemeiza(Gem7) CMH74A.630/SX//Seri82/3/Agent. Sensitive 

Gemeiza9(Gem9) Ald ''s''/HUC ''s;;//CMH74A.630/SX. Sensitive 

Giza168(Gz168) MRL/BUC//Seri. Sensitive 

Source. Wheat Res. Dept., Field Crops Res. Inst., ARC. Egypt 
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2.2. Making the F1 and F2 Diallel Crosses  

In season 2005/2006, a half diallel of crosses involving the six parents (without reciprocals) was done at Giza Agric. 

Res. Stat., Agric. Res. Center, to obtain the F1 seeds of 15 crosses. In summer 2006, a part of  F1 seeds was sown in 

greenhouse of  Wheat Res. Dept. under controlled conditions to obtain the F2 seeds. In season 2007/2008, the half 

diallel of crosses was again done to increase quantity of  F1 seeds and in summer 2007 the F1
 
seeds were again sown 

in the greenhouse under controlled conditions to obtain more seeds of 15 F2 crosses  

2.3. Field Evaluation of 6 Parents and 15 F2's  

In the seasons 2007/2008, 2008/2009, parents (6) and F2's (15) were sown on 17th of  November each season in the 

field of Noubarya Res. Stat., in two experiments under two levels of nitrogen fertilizer; each experiment under one 

level of nitrogen. The low level (low-N) was without fertilization, i.e. 0 kg N/feddan (LN) and the high level (high-

N) was 75 kg Nitrogen/ feddan (HN); this is the recommended level of  Ministry of Agriculture (one feddan = 4200 

m2). This level of nitrogen fertilizer ( equals 168 kg Urea/fed) was added in two equal doses, the first dose was 
added just before the sowing irrigation and the second dose just before the second irrigation (21 days after 

irrigation). In this experiment, a randomized complete block design (RCBD) was used with three replications. Each 

parent was sown in two rows and each F2 was sown in four rows; each row was three meter long; spaces between 

rows were 30 cm and 10 cm between plants, and the plot size was 1.8 m2 for parent and 3.6 m2 for F2. All other 

agricultural practices were done according to the recommendation of Ministry of Agriculture for growing wheat in 

Noubarya region. 

Available soil nitrogen in 30 cm depth was analyzed immediately prior to sowing and N application at the 

laboratories of Water and Environment Unit, ARC, Egypt in the two seasons. Soil nitrogen was found to be 55 and 

57 kg N/ fed in the seasons 2007/2008, 2008/2009, respectively. The soil analysis of the experimental soil at 

Noubarya Research Station, as an average of  the two growing seasons, indicated that the soil is sandy loam (67.86% 

sand, 7.00% silt and 25.14% clay), the pH is 8.93, the EC is 0.55 dSm-1, the soluble cations in meq l-1 are Ca2+ 

(5.30), K+ (0.70), Na+ (0.31), Mg2+ (2.60) and the soluble anions in meq l-1 are CO3
2- (0.00), HCO3

-  (2.10), Cl-  

(5.30)  and SO3
2- (1.51). All other agricultural practices were followed according to the recommendations of ARC, 

Egypt. 

2.4. Data Collection 

The following characteristics were measured on a random sample of 10 plants of each genotype of parents and 30 

plants of   F2's. 1. Number of spikes/plant (SPP): Number of fertile spikes per plant. 2. Number of grains\ spike 

(GPS): Number of grains per spike. 3. 100 grain weight (100GW) in g measured as weight of 100 grains taken 

from each guarded plant. 4. Grain yield/ plant (GYPP) in g  measured as weight of the grains of each individual 

plant. 5. Harvest index (HI%) according formula:  HI= 100 (GYPP/ BYPP), where BYPP= biological yield/plant. 

6. Grain protein content (GPC) measured as follows:  GPC%= Ng x 5.7 according to AACC (2000),where Ng is 

grain nitrogen content. Grain Ng was determined using Kjeldahl procedure according to A.O.A.C. (1990).  

2.5. Statistical and Genetic Analyses 

Each environment (HN and LN) was analyzed separately across seasons as RCBD for the purpose of determining 

genetic parameters using GENSTAT 10th addition windows software. Least significant differences (LSD) values 

were calculated to test the significance of differences between means according to Steel et al. (1997). Diallel crosses 

in F2 generation were analyzed to obtain general (GCA) and specific (SCA) combining ability variances and effects 

for studied traits according to Griffing (1956) model I, i.e. fixed model, method II. Estimates of both general (2
g) 

and specific (2
s) combining ability variances were calculated as shown in Singh and Chaudhary (1985). Rank 

correlation coefficients calculated between per se performance of parents  and their GCA effects in F2's; between per 

se performance of F2 crosses and their SCAF2 effects for studied traits under each environment across two seasons, 

using SPSS 17 computer software and the significance of the rank correlation coefficient was tested according to 
Steel et al. (1997). The correlation coefficient (rs) was estimated for each pair of any two parameters as follows: rs = 

1- (6 Σ di
2)/(n3-n). Where, di is the difference between the ranks of the ith genotype for any two parameters, n is the 

number of pairs of data. The hypothesis Ho: rs= 0 was tested by the r-test with (n-2) degrees of freedom. 

III. RESULTS AND DISCUSSION 

3.1. Mean Performance 

A comparative summary of means of all studied traits across all 21 genotypes (6 parents and 15 F2's) subjected to 

two levels of nitrogen conditions and across two years is presented in Table (2). In general, low N caused a 

significant reduction in all studied traits, namely GYPP, SPP, 100GW, GPS, HI and GPC. Mean grain yield/plant 
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(GYPP) was significantly decreased due to low-N by an average of 18.96, and 15.40% for parents and F2's, 

respectively. Reduction in grain yield of wheat due to low soil nitrogen was reported by several investigators. A 

positive relationship between N application levels and the grain yield has already been shown in many studies 

(Austin et al., 1980; Desai and Bahatia, 1979). Significant reduction in grain yield as a result of low-N was 

associated with significant reductions in all yield components traits, i.e. SPP, 100GW and GPS. These reductions 

were relatively high in magnitude for number of spikes/ plant (SPP) for parents (23.65%) and F2's (43.52%). This 
indicates that SPP is the most determining component of grain yield / plant of wheat under low-N stress. The 

importance of  this trait (number of spikes or fertile tillers per plant) in wheat for grain productivity under abiotic 

stress conditions was previously reported by several investigators (Al-Naggar et al., 2004,2007, 2011, and 2015 

a,b,c). Geleto et al. (1995) reported that grain yield is closely related to the number of spikes per unit area. Fertilized 

plots produced more spikes than control. Such response can be attributed to the adequate nitrogen availability which 

might facilitate the tillering ability of plants, resulting in a greater spike population. Ayoub et al. (1994) also 

reported that spike population increased with increase in nitrogen level.  

Table2. Means of studied wheat traits under low–N (0 Kg N/fed) and high–N (75 Kg N/fed) and relative reduction 

compared to high–N combined across parents and F2's  across two seasons 

Traits Parameter Parents  F2 crosses 

  High-N Low-N   High-N Low-N 

GPS 
Average 80.23 69.81   74.48 64.78 

Reduction% --- 13.47**   --- 12.47** 

100GW(g) 
Average 4.66 4.05   3.37 2.61 

Reduction% --- 12.96**   --- 21.72** 

SPP 
Average 11.88 9.11   12.95 7.31 

Reduction% --- 18.96**   --- 43.52** 

GYPP(g) 
Average 27.53 22.41   25.65 21.54 

Reduction% --- 18.96**   --- 15.40** 

HI(%) 
Average 43.67 40.73   43.50 41.37 

Reduction% ---- 6.57**   --- 3.96 

GPC(%) 
Average 16.18 12.12   14.04 13.83 

Reduction% ------ 25.06**   ------ 23.31** 

N= nitrogen, * and** indicate significance at 0.05 and 0.01 probability levels, respectively.  Reduction%= 
100[(HN-LN)/HN] 

Moreover , low nitrogen caused a significant reduction in biological yield / plant (BYPP) by 12.49 and 11.24%, 
grain protein content (GPC) by 25.06 and 23.31%  and harvest index (HI) by 6.57 and 3.69% for parents and F2's, 

respectively.  

Means of each parent, and F2 cross for studied traits under two nitrogen levels (0 and 75 kg N /Fed) across two 

seasons are presented in Table (3). In general means of all studied grain yield traits and grain protein content and  of 

the three parents L25, L26 and L27 were higher in magnitude than those of the three other parents Gem 7, Gem 9 

and Giza 168 under both high-N and low-N levels. Reduction in GYPP, due to low-N stress was lower in the first 
three parents than that in the latter parents. The first three parents (L25, L25 and L27) were therefore considered as 

low-N tolerant (N-efficient) genotypes and the latter ones (Gem 7, Gem 9 and Giza 168) as low-N sensitive (N 

inefficient) parents. These parents are therefore proper genetic material for diallel analysis for studying inheritance 

of adaptive traits for low-N tolerance in wheat.  

The rank of crosses in F2 generation for most studied traits was changed from one environment (N-level) to another. 
The highest mean of GYPP under low-N was obtained from L25 x L27 followed by L25 x L26 and L26 x Gz168 in 

F2 generation. These crosses also showed the lowest reduction due to low-N stress, and therefore were considered 

tolerant (efficient) to low-N stress. 

Table3. Mean performance of parents and F2's under high-and low- levels of nitrogen across two years for studied 

traits 

 GPS 100GW(g) SPP 

 High N Low N Red% High N Low N Red% High N Low N Red% 

 Parents 

L25 91.29 81.02 11.24** 5.58 4.57 18.14** 13.43 10.83 19.35** 
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L26 87.50 76.85 12.18** 5.22 4.37 16.25** 12.43 10.93 12.06** 

L27 96.02 89.08 7.23** 5.17 4.92 4.99** 12.22 10.85 11.19** 

Gem7 67.80 61.94 8.64** 3.90 3.62 7.14** 11.75 5.90 49.79** 

Gem9 69.52 51.68 25.66** 3.99 3.40 14.68** 10.52 7.32 30.43** 

Giza168 69.25 58.28 15.84** 4.10 3.42 16.52** 10.93 8.85 19.05** 

 F2 crosses 

L25 X L26 87.17 66.98 23.17** 4.63 3.21 30.58** 14.72 10.63 27.75** 

L25 X L27 92.23 77.73 15.73** 4.35 3.70 15.08** 14.27 10.15 28.86** 

L25 X Gem 7 86.88 72.38 16.69** 3.58 2.93 18.06** 12.92 6.83 47.10** 

L25 X Gem 9 65.77 69.50 -5.67* 3.53 3.45 2.27** 13.88 7.32 47.30** 

L25 X Gz 168 67.96 66.31 2.44 2.35 2.49 -5.74** 13.78 7.57 45.10** 

L26 X L27 72.21 72.38 -0.23 4.34 2.60 40.15** 13.15 11.53 12.29** 

L26 X Gem 7 76.69 77.28 -0.77 2.99 2.00 33.18** 12.63 6.75 46.57** 

L26 X Gem 9 65.84 51.14 22.34** 2.92 2.94 -0.46* 12.03 6.27 47.92** 

L26 X Gz 168 70.87 55.66 21.47** 3.45 2.31 32.90** 13.32 6.52 51.06** 

L27 X Gem 7 77.33 56.94 26.38** 3.36 2.58 23.15** 13.30 7.08 46.74* 

L27 X Gem 9 83.33 72.06 13.52** 3.82 3.24 15.03** 11.42 5.27 53.87*8 

L L27 X Gz168 77.69 60.77 21.78** 3.34 1.96 41.39** 13.62 5.03 63.04** 

Gem 7 X Gem9 61.89 74.07 -19.7** 2.38 1.62 32.10** 13.32 4.95 62.83** 

Gem 7 X Gz 168 62.25 46.16 25.85** 2.46 1.94 21.11** 11.63 6.13 47.28** 

Gem 9 X Gz 168 69.02 52.42 24.05** 3.05 2.22 26.98** 10.27 7.68 25.16** 

L.S.D.0.05(G) 2.00 2.10  0.49 0.39  0.94 0.87  

(N)   4.00   0.80   1.30 

(GN)   2.10   0.45   1.50 

Genotypes GYPP(g) HI(%) GPC(%) 

 High N Low N Red%% High N Low N Red% High N Low N Red% 

 Parents 

L25 26.48 25.39 4.1** 39.74 41.06 -3.33 13.6** 11.7** 13.59** 

L26 31.42 26.91 14.35** 45.95 44.16 3.89 15.7** 14.2** 9.86** 

L27 29.86 26.28 11.99** 45.61 45.11 1.10 14.3** 11.6** 18.81** 

Gem 7 25.96 18.37 29.22** 42.84 42.82 0.05 12.3** 8.6* 30.43** 

Gem 9 25.76 17.89 30.53** 40.79 33.49 17.88** 11.3** 6.8* 39.52** 

Giza 168 25.71 19.65 23.57** 47.12 37.77 19.85** 11.1** 8.9* 19.30** 

 F2 crosses  

L25 X L26 25.96 24.97 3.81** 42.52 42.62 -0.23 16.5** 12.0** 27.53** 

L25 X L27 23.94 26.09 -9.02** 41.09 48.33 -17.64** 12.0** 12.7** -5.45 

L25 X Gem 7 23.33 23.88 -2.36 39.97 53.21 -33.1** 13.9** 12.2** 11.89** 

L25 X Gem 9 22.97 15.97 30.49** 35.88 36.20 -0.89 15.6** 12.5** 20.10** 

L25 X Gz 168 27.08 21.75 19.71** 42.14 35.30 16.23** 17.9** 12.5** 29.91** 

L26 X L27 28.97 20.25 30.09** 44.48 34.09 23.37** 16.1** 11.7** 27.33** 

L26 X Gem 7 23.95 23.51 1.84 36.58 40.19 -9.85** 14.7** 12.8** 12.75** 

L26 X Gem 9 25.45 22.04 13.42** 44.14 40.99 7.15** 14.1** 15.4** -9.48** 

L26 X Gz 168 31.84 24.03 24.52** 54.07 43.71 19.17** 13.8** 15.9** -15.31** 

L27 X Gem 7 29.74 19.62 34.04** 56.26 37.25 33.78** 14.4** 12.4** 14.04** 

L27 X Gem 9 24.07 20.07 16.61** 40.37 35.27 12.62** 11.5** 10.1** 12.00** 

L27 X Gz168 26.21 23.39 10.77** 43.90 44.32 -0.96 10.0** 9.5** 5.50 

Gem 7 X Gem9 25.41 19.18 24.50** 45.78 46.85 -2.34 8.3* 8.8* -6.97* 

Gem 7 X Gz 168 21.97 18.25 16.93** 41.39 34.01 17.84** 11.3** 9.0** 19.69** 

Gem 9 X Gz 168 23.88 20.16 15.57** 43.98 48.25 -9.72** 12.7** 8.8* 30.60** 

L.S.D.0.05(G) 2.1 2.0  3.8 4.0  4.41 5.47  

               (N)   2.5   3.0   10.03 

              (GN)   2.04   3.9   6.5 

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 
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On the contrary, the three crosses Gem 7 x Gem 9, Gem 7 x Gz168 and L27 x Gem 9 in F2  generation showed the 

lowest GYPP under low-N and high reduction due to low-N and therefore were considered sensitive (inefficient) to 

low-N stress. 

In general, F2-means for most characters were within the range of parental genotypes. Some F2- progenies under N-

limited environment exhibited enhanced increased ability to accumulate protein in their grains, higher values of HI 

and SPP, suggesting transgressive effects in these characteristics. Gorny et al. (2011) reported a similar conclusion 
for grain dry weight produced per unit of N accumulated in grains (GW/Ng). 

It is worthy to note that the magnitude of N-induced alterations due to low-N stress in the majority of the studied 

traits was distinctly dependent upon the genotype, as evident by the significant genotype x environment interactions. 

These results are consistent with observations previously reported in wheat (El Bassam , 1998, Le Gouis et al. 2000 

and 2002 , Al-Naggar et al. 2004, 2007 , 2011 , 2015 a,b,c ), barley ( Ceccarelli , 1994 and 1996 and Gorny and 

Sodkiewicz, 2001) and maize (Di Fonzo et al. 1982, Medici et al., 2004, Preseterl et al., 2008, Al-Naggar et al. 

2011, 2014, 2015a,b ), corroborating that an evaluation of breeding materials under diverse fertilization regimes is 

necessary for choice of the most efficient parental forms and / or cross combinations, as suggested by Brancourt-

Hulmel et al.(2005), Laperche et al. (2006) , Dawson et al. (2008), Wolfe et al. (2008) and AL-Naggar et al. (2011 , 

2014,  2015 a and b). 

The rank of parents for GYPP was similar in the two N- environments, indicating less effect of interaction between 

parent and nitrogen level on GYPP. The three tolerant parents showed the highest GYPP under high-N and therefore 
were considered responsive parents. Moreover, L26 x Gz168 in F2 generation had the highest GYPP under high-N 

and therefore considered responsive crosses. 

3.2. Combining Ability Variances of F2's 

 Analysis of variance of general (GCA) and specific (SCA) combining ability of F2 crosses of wheat for combined 

data across two years under high and low levels of nitrogen are presented in Table (4) for high–N and Table (5) for 

low-N. Mean squares due to genotypes were highly significant for all studied traits under the two levels of N. 

Results of F2 crosses show highly significant estimates of GCA and SCA mean squares under both high-N and low-

N for all studied traits.  

Table4.  Mean squares due to general (GCA) and specific (SCA) combining ability and their interactions with years 

(Y) for studied traits in F2's under high N conditions across two years. 

SV df MS 

  SPP GPS 100GW GYPP HI% GPC  

Genotypes (G) 20 12.77** 670.95** 5.03** 45.54** 140.44** 1917.10**  

GCA 5 27.48** 1806.64** 8.91** 79.92** 178.97** 5830.25**  

SCA 15 7.86** 292.40** 3.74** 34.08** 127.60** 612.73**  

GCA xY 5 5.06** 21.82** 0.41 7.53** 25.61** 468.05**  

SCA xY 15 2.56** 31.58** 0.19 10.80** 42.51** 162.17**  

GCA/SCA  3.49 6.18 2.30 2.35 1.40 9.52  

GCA xY /SCAxY  1.97 0.69 2.19 0.70 0.60 2.88  

error 80 0.36 1.62 0.11 1.78 5.16 19.81  

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 

The ratio GCA/SCA mean squares was greater than unity for all studied traits of F2 crosses under both high–N and 
low-N conditions, indicating that additive was larger in magnitude and more important than non-additive gene 

effects (dominance and epistasis) in controlling the inheritance of all studied traits under high-N and low N levels in 

the first segregating generation of the studied crosses. 

These observations are in partial conflict with data reported by Le Gouis et al. (2002) who in N-limited diallel 

hybrids between modern French cultivars found markedly higher GCA/SCA ratios for grain yield, grain N yield and 

total above ground N than in those grown under high-N nutrition. More recently, a similar preponderance of GCA 

effects for grain yield was identified in F2 and F3 progenies of factorial hybrids between modern and exotic cultivars 

of barley grown under reduced N fertilization (Gorny and Ratajezak 2008). On the other hand, results of Gorny et al. 

(2011) on wheat appear to be in accord with similar N-shortage- induced increases in the importance of non-additive 
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effects for grain yield previously reported in maize (Di Fonzo et al., 1982; Medici et al., 2004; Al-Naggar et al. 

2011, 2015 a, b ) and those for grain yield in barley (Gorny and Sodkiewicz 2001).  

Table5.  Mean squares due to general (GCA) and specific (SCA) combining ability and their interactions with years 

(Y) for studied traits in F2 under low N conditions across two years 

SV df MS 

  SPP GPS 100GW GYPP HI% GPC  

Genotypes (G) 20 27.77** 789.82** 4.89** 60.04** 182.02** 1516.3**  

GCA 5 62.93** 1792.94** 6.37** 150.04** 61.93** 2450.8**  

SCA 15 16.05** 455.45** 56.62** 17.59** 222.05** 1204.8**  

GCA xY 5 5.06** 93.53** 4.94** 14.87** 67.16* 59.08  

SCA xY 15 4.83** 17.31** 2.33** 39.84** 149.93** 32.8  

GCA/SCA  3.92 3.94 0.11 8.53 0.28 2.03  

GCA xY /SCAxY  1.05 5.40 2.13 0.37 0.45 1.80  

error 80 0.34 2.06 0.08 1.71 8.12 43.14  

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 

Results indicate that mean squares due to GCA x year and SCA x year interactions in F2's were significant or highly 

significant in the two levels of N, except for 100GW under high–N and GPC under low-N, indicating that the 

additive and non–additive gene effects in most cases were affected by years.  

The mean squares due to SCA x year were higher in magnitude than those due to GCA x year for all studied traits of 

F2 crosses, except for SPP and 100GW under high–N and SPP, GPS, 100GW and GPC under low-N, suggesting that 

in F2 crosses SCA (non-additive variance) is more affected by year than GCA for four traits (GYPP, GPS, HI nd 

GPC) under high-N and two traits (GYPP and HI) under low-N and GCA (additive variance) is more affected by 

year than SCA for other traits. 

3.3. GCA Effects Of Parents In F2 Crosses 

Estimates of general combining ability (GCA) effects calculated from the analysis of F2 diallel crosses under the two 

levels of N are presented in Tables (6 and 7). The best general combiners based on F2 diallel analysis were 

considered those having the highest positive GCA effects for the rest of studied F2 traits. 

Table6. Estimates of general combining ability effects (ĝi) of all traits in F2's under high N conditions across two 

years 

Parents SPP GPS 100GW GYPP HI GPC  

L25 1.20** 6.22* 0.43** -0.88* -0.09* -4.21**  

L26 0.41* 1.87* 0.34** 1.96** -0.06* 9.01**  

L27 0.12 7.75** 0.40** 1.17** -0.04** 13.04**  

Gem 7 -0.17 -4.03** -0.45** -0.87* -0.01 6.13**  

Gem 9 -0.70** -5.99** -0.31** -1.25* 0.084* -9.41**  

Giza 168 -0.85** -5.82* -0.41** -0.11 0.12** -14.55**  

SEgi 0.32 0.68 0.17 0.71 0.03 2.37  

SEgi-gj 0.50 1.05 0.27 1.11 0.06 3.68  

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 

Table7. Estimates of general combining ability effects (ĝi) of all traits in F2's under low N conditions across two 

years 

Parents SPP GPS 100GW GYPP HI GPC  

L25 1.17** 6.43** 0.47** 1.36* 1.18 -4.91*  

L26 1.1** 1. 7** 0.08 2.01* 0.20* 7.25**  

L27 0.75* 6.81** 0.34* 1.18* 0.14 10.44**  

Gem 7 -1.41** -1.6* -0.36* -1.42* 1.10 -1.27  

Gem 9 -1.1** -5.1** -0.11 -2.42 -1.72* -6.61**  

Giza 168 -0.52* -8.2** -0.42** -0.71* -0.90 -4.89*  

SEgi 0.31 0.77 0.15 0.70 1.53 3.50  

SEgi-gj 0.48 1.19 0.23 1.08 2.36 5.44  

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 
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Data in Table (6) indicate that under high-N, the best general combiners based on F2 diallel analysis were L27 for 

fou traits (GPS, 100GW, GYPP and GPC), L26 for five traits (SPP, GPS, 100GW, GYPP and GPC), L25 for three 

traits (SPP, GPS, and 100GW), and Gem7 for one trait (GPC).  

Under low-N (Table 7), the best general combiners were L25 for seven traits (SPP, GPS, 100GW and GYPP) , L26 

for five traits (SPP, GPS, GYPP, HI, and GPC), L27 for five traits (SPP, GPS, 100GW, GYPP, and GPC). The best 

combiners identified from both F1 and F2 diallel analyses under high-N and low-N are more or less similar in most 

cases under low-N conditions. L25, L26 and L27 are generally the best combiners for most grain yield and quality 

traits based on diallel analyses of F2 crosses. These parents are expected to have more additive genes for the 

respective characters 

3.4. SCA Effects Of F2’s 

Specific combining ability (SCA) effects of the F2 crosses under two levels of N are presented in Tables (7 and 8). 

Under high-N, the best F2 cross in SCA effects was L27 x Gem 7 for three traits (GYPP, HI  and GPC), L26 x 

Gz168 for two traits (GYPP and HI), Gem7 x Gem9 for two traits (GPS and HI) and Gem 9 x Gz168, and L25 x 

Gem7 for one trait (GPS) 

Table8.  Estimates of specific combining ability effects (ŝij) of  F2's under high N conditions across two years 

Crosses SPP GPS 100GW GYPP HI GPC  

L25 X L26 1.03* 2.96* 0.12 -1.31 0.84 9.49**  

L25 X L27 0.53 2.15* -0.21 -2.53* -1.05 4.92  

L25 X Gem 7 -1.58* 8.57** -0.14 -1.1 -0.71 -12.7**  

L25 X gem 9 0.55 -10.57** -0.33 -1.08 -3.05 -4.56  

L25 X Gz 168 0.32 -8.56** -1.40** 1.90 -0.30 -1.05  

L26X L27 0.39 -13.52** -0.13 -0.40 -1.73 -3.20  

L26X Gem 7 -0.65 2.72* -0.63* -3.32 -8.17** 4.94  

L26X Gem 9 -0.92* -6.15** -0.84* -1.44 1.13 -12.32**  

L26X Gz 168 -0.15 -1.30 -0.21 3.80* 7.56** 6.22  

L27 X Gem 7 -0.64 -2.51* -0.33 3.26* 11.05** 11.19**  

L27 X Gem 9 -1.29* 5.45** -0.01 -2.04* -3.10* 13.27**  

L27 X Gz168 -0.003 -0.36 -0.38 -1.03 -3.06* 8.38**  

Gem 7 X Gem9 2.44* -4.21** -0.60* 1.35 3.77* 3.69  

Gem7 X Gz 168 -0.81 4.02** -0.41 -3.23* -4.12* 12.9**  

Gem9 X Gz 168 -1.70* 4.71** 0.03 -0.94 0.21 -3.70  

SESij 0.89 1.87 0.48 1.96 3.34 6.54  

SESij-Sik 1.32 2.79 0.71 2.93 4.98 9.76  

SESij-Skl 1.23 2.58 0.66 2.71 4.62 9.04  

*and** indicate significant at 0.05 and 0.01 probability levels, respectively 

Under low-N, the best F2 cross for SCA effects was L25 x Gem 7 for two traits (GYPP and HI), Gem9 x Gz168 for 

SPP, L27 x Gem 9, for GPS and GPC and L27 x Gz168 for GPC. These F2 crosses and especially those showing 

high SCA effects and including one parent of high GCA effects are expected to release more transgressive 

segregants if additive gene effects existed in the high general combiner parent and epistasis acts in the cross in the 

same direction for decreasing the undesirable characters and increasing the desirable traits. Results of Gorny et al. 

(2011) on wheat F2 crosses appear to be in accord with similar N-Shortage – induced increases in the importance of 

non – additive effects for grain yield and components of NUE previously reported in maize (Di Fonzo et al., 1982, 

Medici et al., 2004, Al-Naggar et al. 2015a) and those for grain yield under low-N in grain sorghum (Al-Naggar et 

al., 2008). Gorny et al. (2011) reported that under high N-fertilization, the grain yield components were incanted in 

a manner favorable for wheat selection (preponderance of additive effects) however the enhanced contribution of 

non-additive gene effects and increased dominance under N-limited conditions could impede wheat selection to 

improve the N efficiency and adaptation to less luxurious fertilization regimes. They concluded that selection 

methods that eliminate masking non-additive influences and take advantage of the additive variance should be 

employed to improve those traits.  
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Table9. Estimates of specific combining ability effects (ŝij) of  F2's under low N conditions across two years 

Crosses SPP GPS 100GW GYPP HI GPC  

L25 X L26 0.54 -7.36* -0.36 -0.19 0.06 16.62**  

L25 X L27 0.40 -1.73 -0.14 1.76 5.82* -3.73  

L25 X Gem 7 -0.76 1.34 -0.20 2.15** 9.74* -12.50**  

L25 X Gem 9 -0.60 1.99 0.07 -4.77* -4.45* -18.77**  

L25 X Gz 168 -0.91* 1.87 -0.58* -0.70 -6.17* -6.34  

L26X L27 1.86* -2.35* -0.85* -4.73** -7.45* -8.61  

L26X Gem 7 -0.79 10.97** -0.75* 1.13 -2.30 -0.11  

L26X Gem 9 -1.57* -11.66** -0.05 0.65 1.32 7.09  

L26X Gz 168 -1.89* -4.05* -0.37* 0.94 3.22 5.73  

L27 X Gem 7 -0.08 -14.49** -0.43** -1.93* -5.18* 0.82  

L27 X Gem 9 -2.22* 4.15* -0.01 -0.48 -4.34* 23.47**  

L27 X Gz168 -3.02* -10.25** -0.99** 1.13 3.89 25.36**  

Gem 7 X Gem9 -0.39 14.57** -0.94** 1.23 6.28* -0.59  

Gem 7 X Gz 168 0.23 -10.25** -0.30* -1.41 -7.39* -6.50  

Gem 9 X Gz 168 1.5* -0.47 -0.26* 1.50 9.69* -3.96  

SESij 0.85 2.11 0.41* 1.92 4.19 9.66  

SESij-Sik 1.27 3.15 0.61* 2.87 6.26 14.40  

SESij-Skl 1.18 2.92 0.57* 2.66 5.79 13.34  

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 

3.5. Correlations Between Xp And GCAF1 And Between XF2 And SCAF2 Effects 

Rank correlation coefficients calculated between mean performance of parents (Xp) and their GCA effects of F2's 

for studied grain yield and quality characters are presented in Table (9). Significant (P≤ 0.05 or 0.01) correlations 
between Xp and GCAF1 effects and between Xp and GCAF2 effects  existed for all studied traits under both high-N 

and low-N, except for HI between Xp and GCAF2 under high-N conditions. In general, the magnitude of correlation 

coefficient between Xp  and GCAF2 effects was very high (> 0.93 in 8 out of 12 cases ) and was higher at low-N 

than high-N in 4 out of 6 traits. The highest correlation coefficient under low-N between Xp and GCA was observed 

for GYPP (0.98) and 0.97 for SPP, 0.93 for GPS and 0.89 for 100GW. On the contrary, the lowest correlation 

coefficient between Xp and GCA effects was shown under high-N for HI (0.25). These results indicate that the best 

performing parents for grain yield components are also the best general combiners and vice versa, and therefore, the 

mean performance of a given parent under low-N and high-N is an indication of its general combining ability. This 

conclusion was previously reported by Le Gouis et al., (2000) and Yildirim et al. (2007) in wheat and Meseka et al 

(2016) and Al-Naggar et al., (2015a) in maize. Le Gouis et al. (2000) reported that when GCA effects are largely 

superior to SCA effects, the correlation between per se value and GCA would give an indication about the 
possibility to use the means of the two parents to predict the value of hybrid. Yildirim et al. (2007) reported that per 

se values of parent for grain yield traits were positively correlated with GCA effects of themselves at N0 level; this 

can be used to obtain high N use efficient lines. 

Table10. Rank correlation coefficients among means performance of parents (Xp) and their GCA effects for F2
,s 

(GCAF2) and between mean performance of F2
,s (X F2) and  SCAF2 effects under high and low–N environments 

across two seasons. 

Traits XP vs GCA F2  X F2 vs SCA F2  

 HN LN   HN LN 

SPP 0.98** 0.71**   0.71** 0.38** 

GPS 0.98** 0.70**   0.70** 0.13 

100GW 0.98** 0.88**   0.88** 0.37** 

GYPP 0.94** 0.83**   0.83** 0.13 

HI% 0.25 0.91**   0.91** -0.06 

GPC 0.77** 0.32**   0.32** 0.34** 

* and** indicate significant at 0.05 and 0.01 probability levels, respectively 
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For F2 crosses, under both low-N and high-N, the correlation coefficient between mean performance of F2's (XF2) 

and their SCAF2 effects were highly significant and positive; in all studied traits under high-N and SPP, 100GW and 

GPC under low-N (Table 9). This indicates that the mean performance of a given F2 cross could be used as an 

indication of its specific combining ability effects for all studied characters under high-N and SPP, 100GW and GPC 

under low-N. This conclusion was also reported by Le Gouis et al., (2000) and Yildirim et al. (2007) under low-N 

conditions.  

Summarizing the above mentioned results, it cloud be concluded that low-N stress affects on the associations 

between mean performance of parents and F2's on GCA and SCA effects of F2, respectively and so conclusions 

generated from results under high-N differ from those generated from results under low-N. Only indication under 

high-N and low-N are similar for the association between mean performance of parents and their GCA effects for F2 

(GCAF2). Thus, under either low-N or high-N the mean performance of a given parent could be considered an 

indication of its general combining  ability estimated from F2's. But under high-N only, the mean performance of a 

given F2 cross could be considered an indication of its SCA effects in F2 generation. 

IV. CONCLUSIONS 

This study identified wheat genotypes (the promising lines L25, L26 and L27 and their F2 crosses L25 x L27, L25 x 
L26 and L26 x G168 of high mean performance and combining ability effects for grain yield and quality traits under 

low-N conditions. These genotypes could be offered to wheat breeding programs for developing low-N tolerant 

varieties. Breeding programs that utilizes both additive and non-additive genetic variances could be used to improve 

grain yield and quality traits, with more emphasis on selection methods in segregating generations of wheat hybrids 

that utilize additive and additive x additive genetic components under low-N conditions. The results indicated that 

under low-N and high-N, the mean performance   of a given parent   is an indication of its general combining ability 

and that the mean performance of a given F2 cross could be used as an indication of its specific combining ability 

effects for all studied grain yield component traits and grain protein content.  
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